Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English
Комплексообразование с карбамидом. В 1940 г. Бенген [1] открыл способность карбамида образовывать кристаллические комплексы с парафиновыми углеводородами нормального строения. Первые исследования, относящиеся к 1949—1950 гг. [2—8], показали, что комплекс с карбамидом могут образовывать кроме нормальных парафинов слаборазветвленные изопарафины с достаточно длинным прямым участком цепи, циклические углеводороды с боковыми цепями нормального строения, а также другие органические соединения, содержащие в молекуле длинные не-разветвленные углеводородные цепи, в частности спирты, кислоты, эфиры, моногалоидные производные нормальных парафинов и др. Неразветвленная часть цепи должна быть тем длиннее, чем больще пространственная нагрузка и число заместителей в молекуле. Свойство карбамида образовывать комплексы с соединениями, имеющими парафиновые цепи нормального строения, используется при изучении химического состава сложных органических смесей, в частности масляных фракций нефти, так как позволяет разделить сложную смесь углеводородов на узкие фракции по структуре парафиновых цепей и в промышленности для получения низкозастывающих топлив и масел.

ПОИСК





Теоретические основы процесса

из "Физико-химические основы производства нефтяных масел"

Комплексообразование с карбамидом. В 1940 г. Бенген [1] открыл способность карбамида образовывать кристаллические комплексы с парафиновыми углеводородами нормального строения. Первые исследования, относящиеся к 1949—1950 гг. [2—8], показали, что комплекс с карбамидом могут образовывать кроме нормальных парафинов слаборазветвленные изопарафины с достаточно длинным прямым участком цепи, циклические углеводороды с боковыми цепями нормального строения, а также другие органические соединения, содержащие в молекуле длинные не-разветвленные углеводородные цепи, в частности спирты, кислоты, эфиры, моногалоидные производные нормальных парафинов и др. Неразветвленная часть цепи должна быть тем длиннее, чем больще пространственная нагрузка и число заместителей в молекуле. Свойство карбамида образовывать комплексы с соединениями, имеющими парафиновые цепи нормального строения, используется при изучении химического состава сложных органических смесей, в частности масляных фракций нефти, так как позволяет разделить сложную смесь углеводородов на узкие фракции по структуре парафиновых цепей и в промышленности для получения низкозастывающих топлив и масел. [c.196]
Чистый карбамид имеет тетрагональную структуру [9]. Его молекулы упакованы плотно, и свободные пространства, в которых могут разместиться молекулы другого вещества, отсутствуют (рис. 76). При образовании комплекса происходит перестройка кристаллической структуры карбамида из тетрагональной в гексагональную. При помощи рентгеноструктурного анализа установлена идентичность рентгенограмм комплексов двух парафиновых углеводородов нормального строения ( н-ундекана и н-гексадека-на), при этом положение линий спектров этих комплексов отличалось от таковых для чистого карбамида (табл. 26). Различие в параметрах элементарной ячейки кристаллов карбамида и комплекса подтверждает способность карбамида изменять в процессе комплексообразования кристаллическую решетку из тетрагональной в гексагональную. [c.196]
С карбамидом в том случае, если в основной цепи содержится не менее 10 атомов углерода. Циклические углеводороды способны к комплексообразованию при наличии боковых цепей нормального строения с числом атомов углерода 20—25. Известно также о кратковременном существовании неустойчивых комплексов карбамида с н-бутаном и даже с пропаном [13]. При пониженных температурах (ниже —19 °С) н-пентан образует весьма непрочный комплекс с карбамидом [14], что подтверждается началом его разложения уже при 10—12°С. Из смеси пентанов нормального и изостроения при температурах минус, 35—45 °С, давлении 0,1 — 0,2 МПа (1—2 кгс/см ) и длительности контактирования 3 ч можно извлекать н-пентан комплексообразованием с карбамидом. [c.198]
С увеличением числа атомов углерода в молекуле парафиновых углеводородов значение константы равновесия снижается и, следовательно, стабильность комплекса повышается. [c.200]
Образование комплекса — экзотермический процесс. По данным [3], теплота комплексообразования, отнесенная к числу атомов углерода в молекуле нормального парафина, составляет около 6,7 кДж (1,6 ккал), что вдвое больше теплоты плавления этих углеводородов и значительно меньше теплоты их адсорбции на твердой поверхности. Отсюда следует, что тепловой эффект комплексообразования есть результат экзотермического процесса адсорбции и эндотермического процесса перехода тетрагональной структуры карбамида в гексагональную в момент комплексообразования. Теплота образования комплекса складывается из теплот трех процессов преодоления сил межмолекулярного сцепления молекул парафинового углеводорода, численно равных теплоте испарения ориентации молекул карбамида в отношении молекул парафиновых углеводородов (экзотермический процесс) превращения кристаллической структуры карбамида из тетрагональной в гексагональную (эндотермический процесс). [c.201]
Равновесие сдвигается в сторону диссоциации при добавлении растворителей карбамида или углеводородов и повышении температуры [1—4, 16, 27]. Низкомолекулярные -парафины образуют менее стабильный комплекс, чем высокомолекулярные, однако скорость образования комплекса для них выше. Комплекс образуется в присутствии так называемых активаторов, к числу которых относятся вода, низшие спирты, кетоны, некоторые хлорорганические соединения, а также насыщенные водные или спиртовые растворы карбамида. Существует несколько мнений о механизме действия активаторов в процессе комплексообразования с карбамидом. По данным [3], роль активаторов заключается в удалении неуглеводородных примесей с поверхности кристаллов карбамида, что дает возможность молекулам углеводородов проникать в эти кристаллы. Высказано предположение [29], что сначала структура кристаллов карбамида преобразуется из тетрагональной в гексагональную, а действие растворителей карбамида заключается в осаждении его в тонкоизмельченном виде, что обеспечивает мгновенное образование комплекса с углеводородами. [c.203]
Наиболее вероятный механизм действия активаторов [27] заключается в том, что, являясь полярными веществами, они способствуют уменьшению межмолекулярных сил взаимодействия молекул твердых и жидких углеводородов. При этом твердые углеводороды высвобождаются из раствора, что благоприятствует образованию спиралеобразной гексагональной структуры карбамида и, следовательно, комплексообразованию. Эта гипотеза объясняет и тот фа кт, что полярные растворители (иекоторые спирты, кетоны и хлорорганические соединения) в условиях комплексообразования легко растворяют жидкие и не растворяют твердые углеводороды, выполняя одновременно функции растворителя и активатора. [c.203]
По данным Граната и Батори [34, 35] время, необходимое для завершения комплексообразования, составляет от 15 мин до нескольких часов. При использовании воды в качестве активатора или растворителя карбамида комплексообразование начинается после некоторого индукционного периода, который сокращается при введении затравки [35, 36] и увеличивается в присутствии смол [30, 36]. Смолы адсорбируются на кристаллах комплекса, препятствуя их росту, или на поверхности раздела фаз водный раствор карбамида — углеводороды, нарушая контакт между этими фазами. [c.204]
Серосодержащие органические соединения тормозят процесс комплексообразования карбамида с парафинами /в том случае, если их содержание выше лредельноро. Так, при содержании сероорганических соединений в дизельной фракции более 0,5% (масс.) выход жидких парафиновых углеводородов, образующих комплекс, уменьшается [32]. [c.204]
Для разделения смесей индивидуальных углеводородов применяют [37] осадочную хроматографию на кристаллическом карбамиде. [c.204]
Комплексообразование с тиокарбамидом. Способность тиокарб-амида образовывать комплексы с некоторыми веществами была открыта независимо друг от друга Фаттерли [38, 39] и Англа [40] в середине 40-х годов. Канальные соединения включения тио-карбамида подобны комплексам карбамида с нормальными парафиновыми углеводородами. Однако в то время как карбамид образует комплексы с углеводородами, содержащими углеродную цепь нормального строения, тиокарбамид, в кристаллической решетке которого образуются каналы большого диаметра (наличие большего атома серы), способен к комплексообразованию с изо-парафиновыми и циклическими углеводородами. Методы комплексообразования с карбамидом и тиокарбамидом дополняют друг друга при разделении смесей углеводородов и дают возможность достигать некоторой избирательности. [c.205]
Рентгенографические исследования комплексов тиокарбамида с соединениями, различающимися длиной цепи, показали, что молекулы тиокарбамида расположены в комплексе ромбоэдрически [10, 24, 43], образуя псевдогексагональные ячейки. Больший размер атома серы в молекуле тиокарбамида по сравнению с атомом кислорода в молекуле карбамида способствует образованию канала большего диаметра. [c.205]
Наиболее устойчивые комплексы тиокарбамид образует с изо-парафнновыми и насыщенными циклическими углеводородами, содержащими разветвленные цепи. [c.205]


Вернуться к основной статье


© 2025 chem21.info Реклама на сайте