ПОИСК Статьи Рисунки Таблицы Основные статистические характеристики однородной выборки н их вычисление из "Физико-химические и биологические методы оценки качества лекарственных средств" Погрешностью измерения называют отклонения результата измерения от истинного значения измеряемой величины. [c.266] По способу вычисления погрешности можно подразделить на абсолютные и относительные. [c.266] В зависимости от того, завышает или занижает погрешность результат анализа, погрешности могут быть положительные и отрицательные. [c.266] Относительная погрешность вычисляется как отношение абсолютной пргрешности измерения к истинному значению измеряемой величины. Она может быть выражена в долях или процентах и обычно знака не имеет. [c.266] Чаще всего погрешности классифицируют по характеру причин, их вызывающих. При этом погрешности делят на систематические и случайные, а также промахи (или грубые погрешности). [c.267] К систематическим относят погрешности, которые вызваны постоянно действующей причиной, они постоянны во всех измерениях или меняются по постоянно действующему закону. Знак систематической погрешности от эксперимента к эксперименту не меняется, она или только завышает, или только занижает результат. Систематические погрешности могут и должны быть выявлены и устранены. [c.267] Случайные погрешности — это погрешности, причины появления которых неизвестны. Они не имеют постоянного знака, название случайные указывает на отсутствие какой-либо закономерности в их появлении. Появление случайных погрешностей обычно рассматривается как случайное событие и оценивается методами математической статистики. [c.267] Промах — это погрешность, резко искажающая результат анализа и обычно легко обнаруживаемая, вызванная, как правило, небрежностью или некомпетентностью аналитика. [c.267] Деление погрешностей на систематические и случайные в известной степени условно. [c.267] Воспроизводимость характеризует степень близости друг к другу единичных определений, рассеяние единичных результатов относительно среднего (рис. 9.2). [c.268] В отдельных случаях наряду с термином воспроизводимость используют термин сходимость . При этом под сходимостью понимают рассеяние результатов параллельных определений, а под воспроизводимостью — рассеяние результатов, полученных разными методами, в разных лабораториях, в разное время, и т.п. [c.268] Правильность — это качество химического анализа, отражающее близость к нулю систематической погрешности. Правильность характеризует отклонение полученного результата анализа от истинного значения измеряемой величины (см. рис. 9.2). [c.268] Иногда вводят понятие точность, характеризующее степень близости результатов единичных определений к истинному значению измеряемой величины. [c.268] К началу обработки результатов химического анализа методами математической статистики систематические погрешности должны быть выявлены и устранены или переведены в разряд случайных. При этом данные анализа — случайные величины с определенным распределением вероятности. [c.268] Генеральная совокупность — гипотетическая совокупность всех мыслимых результатов от - Е до + Е выборочная совокупность (выборка) — реальное число (п) результатов, которое имеет исследователь. [c.268] Одна из основных задач аналитика при оценке случайных погрешностей химического анализа — нахождение функции распределения, которой описываются экспериментальные данные. Из математической статистики следует, что случайная величина считается заданной, если известна функция ее распределения. Эта функция может быть представлена функциональной зависимостью или графически. Данные большинства аналитических определений при наличии генеральной совокупности результатов химического анализа подчиняются закону нормального распределения (распределение Гаусса). Однако закон нормального распределения неприменим для обработки малого числа измерений выборочной совокупности (п 20). Для обработки таких выборок в химическом анализе используют распределение Стьюдента, которое связывает между собой три основные характеристики ширину доверительного интервала, соответствуюш ую ему вероятность и объем выборки. Прежде чем рассматривать распределение Стьюдента и его применение для обработки данных химического анализа, остановимся на некоторых основных характеристиках выборочной совокупности. [c.269] Термином выборка обозначают, как уже говорилось, совокупность статистически эквивалентных результатов (вариант). В качестве такой совокупности можно, например, рассматривать ряд результатов, полученных при параллельных определениях содержания какого-либо вещества в однородной по составу пробе. [c.269] Результаты, полученные при статистической обработке выборки, будут достоверны только в том случае, если выборка однородна, т.е. если варианты, входящие в нее, не отягощены грубыми ошибками, допущенными при измерении или расчете. Такие варианты должны быть исключены из выборки перед окончательным вычислением ее статистических характеристик. Как поступают в этом случае, будет описано в разделе 9.3. [c.269] Число степеней свободы — это число независимых переменных в выборочной совокупности за вычетом числа связей между ними. В уравнении (9.4) = п — 1, так как рассматривается рассеяние данных относительно среднего, т.е, на результаты наложена одна связь. [c.270] Вернуться к основной статье