ПОИСК Статьи Рисунки Таблицы Дцн — вторая универсальная форма клеточной энергии из "Микробиология Издание 4" В течение длительного времени считали, что АТФ и другие высокоэнергетические соединения, находящиеся в равновесии с ним, представляют собой единственную форму энергии, которая может использоваться живыми клетками во всех энергозависимых процессах. Вопрос о характере связи между транспортом электронов, с одной стороны, и превращением фосфорных соединений, с другой, долгое время оставался неясным. Было установлено, что использование энергетических ресурсов (органических или неорганических соединений при дыхании, света при фотосинтезе) связано с переносом электронов по цепи, состоящей из белковых и небелковых компонентов, способных к обратимому окислению — восстановлению. В результате этого переноса освобождающаяся на отдельных участках дыхательной или фотосинтетической цепи энергия трансформируется в химическую энергию фосфатных связей АТФ. Молекулярный механизм фосфорилирования, сопряженный с электронным транспортом, был неизвестен. [c.100] Поскольку — химические частицы, несущие положительный заряд, неравномерное их накопление по обе стороны мембраны приводит к возникновению не только химического (концентрационного) градиента этих частиц, но и ориентированного поперек мембраны электрического поля (суммарный положительный заряд, где происходит накопление Н , и отрицательный заряд по другую сторону мембраны). Таким образом, при переносе электронов на ЦПМ возникает трансмембранный электрохимический градиент ионов водорода, обозначаемый символом АЦн+ и измеряемый в вольтах (В, мВ), который состоит из электрического (трансмембранная разность электрических потенциалов A jr) и химического (концентрационного) компонентов (фадиент концентраций — АрН). Измерения показали, что на сопрягающих мембранах прокариот при работе дыхательных и фотосинтетических электронтранспортных цепей Арн+ достигает 200—250 мВ, при этом вклад каждого компонента непостоянен. Он зависит от физиологических особенностей организма и условий его культивирования. [c.101] Реакция, протекающая слева направо, сопряжена с транспортом Н по градиенту Ар.н+ что приводит к его разрядке и синтезу АТФ. Протекающая в противоположном направлении реакция гидролиза АТФ, сопровождающаяся переносом Н+ против градиента, приводит к образованию (или возрастанию) АДн+ на мембране. Таким образом, АТФ-синтазный ферментный комплекс служит механизмом, обеспечивающим взаимное превращение двух форм клеточной энергии (АЦн+ АТФ), устройством, сопрягающим процессы окислительной природы с фосфорилированием. [c.102] Известно несколько реакций, генерирующих Ар,н+. У разных групп прокариот от 1 до 3 из них локализованы в дыхательной цепи. На 2 или 3 этапах АЦн+ генерируется в темновых реакциях переноса электронов в фотосинтетической цепи. Образование АЦн+ происходит при гидролизе АТФ в Н -зависимой АТФ-синтазной реакции. К числу устройств, генерирующих АДн+ посредством трансмембранного переноса Н , относится бактериородопсин галофильных архебактерий. У некоторых фупп прокариот обнаружена локализованная в мембране неорганическая пирофосфатаза, катализирующая расщепление и синтез пирофосфата. Расщепление последнего приводит к генерированию АДн+- Наконец, источником АДн+ на ЦПМ прокариот могут быть процессы, связанные с выделением во внешнюю среду продуктов брожения, транспорт которых через мембрану происходит вместе с протонами. [c.102] Энергия в форме Арн+ может использоваться в различных энергозависимых процессах, локализованных на мембране. [c.102] Синтез АТФ за счет Арн+ можно рассматривать как пример химической работы. С использованием энергии АДн+ могут осуществляться и другие виды химической работы в клетке синтез пирофосфата, катализируемый связанным с мембраной ферментным комплексом обратный перенос электронов, приводящий к восстановлению НАД(Ф) . [c.102] Энергия в форме Арн+ используется для поглощения ДНК в процессе генетической трансформации и для переноса белков через мембрану. Движение многих прокариот обеспечивается энергией АДн+- Важная роль принадлежит АДн+ или одной из его составляющих в осуществлении процессов активного транспорта молекул и ионов через ЦПМ прокариот (рис. 26). [c.102] Все известные системы транспорта у прокариот можно разделить на два типа первичные и вторичные. Разобранные выше примеры трансмембранного переноса с участием окислительновосстановительной петли , бактериородопсина или в результате гидролиза АТФ, катализируемого Н —АТФ-синтазой, происходящие за счет химической энергии или электромагнитной энергии света, относятся к первичным транспортным системам (рис. 26, А). В результате их функционирования на мембране генерируется энергия в форме А]1н+, которая, в свою очередь, может служить движущей силой, обеспечивающей с помощью индивидуальных белковых переносчиков поступление в клетку необходимых веществ разной химической природы и удаление из нее конечных продуктов метаболизма. Устройства, с помощью которых осуществляется трансмембранный перенос веществ по градиенту Дрн+ или одной из его составляющих, относятся к вторичным транспортным системам (рис. 26, Б). [c.103] Как известно, в случае пассивной диффузии вещества движущей силой служит только фадиент его концентрации (Ац) вне и внутри клетки. Если подобный фадиент существует и в процессе активного транспорта вещества, он может вносить определенный вклад в общую движущую силу процесса, однако этот вклад не является определяющим. В большинстве случаев перенос вещества по механизму активного транспорта происходит против концентрационного фадиента этого вещества. [c.103] Вторичные транспортные системы могут быть также разделены на три группы. Перенос молекул вещества, не сопряженный с какими-либо встречными или сопутствующими перемещениями молекул других веществ, получил название унипорта. По механизму симпорта перенос молекул вещества сопряжен с переносом протонов в том же направлении и осуществляется при участии одного и того же белкового переносчика. В процессе антипорта перенос вещества сопряжен с переносом в противоположном направлении. Поступление веществ в клетку по механизму симпорта и унипорта широко распространено у прокариот и служит для поглощения ими большинства необходимых органических и неорганических соединений. [c.104] Для понимания движущих сил, участвующих в активном транспорте разных типов молекул (электронейтральных, несущих положительный или отрицательный заряд), следует помнить, что в цитоплазме более щелочная среда и суммарный отрицательный заряд. Незаряженные молекулы (глюкоза, галактоза, нейтральные аминокислоты) переносятся в клетку вместе с протонами за счет обоих компонентов Ар,н+—А А и ДрН. [c.104] Все это позволяет рассматривать энергию в форме Арн+ (наряду с АТФ) как щироко используемую внутри клетки. Преобразование энергии в клетке прокариот схематически изображено на рис. 27. Как видно из этой схемы, АТФ и АДн+ можно считать двумя взаимопревращаемыми энергетическими валютами клетки, каждая из которых способна служить источником энергии для выполнения химической, осмотической, механической работ. [c.105] Вернуться к основной статье