ПОИСК Статьи Рисунки Таблицы Методы исследования биополимеров из "Биологическая химия" Биохимия является одновременно и биологической, и химической дисциплиной. Биологической она является в первую очередь по природе изучаемых ею объектов, которые представлены веществами животного, растительного и микробного происхождения. Биологической она является и по тем конечным целям, во имя которых проводятся биохимические исследования — познание свойств и выяснение механизмов функционирования веществ, из которых построена живая материя. В то же время, будучи наукой о веществах и о протекающих с их участием химических превращениях, биохимия по своей методологии является химической дисциплиной. Она использует разнообразные методы, которые предоставляют в её распоряжение фундаментальные химические науки — неорганическая, органическая, аналитическая и физическая химия, а также химия высокомолекулярных соединений. В то же время природа исследуемых объектов, особенности решаемых задач накладывают свою специфику на использование этих методов, на их относительную значимость. Наиболее выпукло эти особенности проявляются при исследовании нерегулярно построенных биологических полимеров — белков и нуклеиновых кислот, которые являются более высокой формой организации материи, чем низкомолекулярные соединения и регулярно построенные гомополимеры, также широко представленные в живой природе, в первую очередь различными полисахаридами. [c.230] Становление биохимии как основополагающей биологической дисциплины началось с исследования веществ, существующих в живой природе, и химических процессов, происходящих в живых организмах. Поэтому среди методов, используемых в биохимии, ключевое значение имеют выделение веществ из биологических источников и, как правило, их очистка с целью получения индивидуальных соединений. [c.230] Во-вторых, работа с биохимическими объектами, которая касается не только методов выделения и очистки, но и многочисленных исследовательских работ с ними, особенно с белками и нуклеиновыми кислотами, заключается в необходимости манипулировать с очень маленькими количествами вещества — миллиграммами, микрограммами и даже значительно меньшими. При выделении это связано с незначительным содержанием многих компонентов в исходной биомассе, а также в ряде случаев с ограниченным количеством биомассы, например при исследовании редко встречающегося животного или растения или очень мелких живых объектов, которые иногда добываются поштучно и доступны в небольшом числе. [c.231] Как при выделении, так и в ходе различных исследовательских процедур необходимо осуществлять детекцию выделяемых или исследуемых веществ. При ничтожно малом количестве материала используемые для детекции методы должны быть высокочувствительными. Поэтому в биохимии редко используются такие классические приемы аналитической химии, как гравиметрический или объемный анализ. Основными методами детекции являются спектрофотометрические методы, основанные на измерении поглощения видимого или ультрафиолетового света, радиохимические методы, основанные на измерении радиоактивности, и люминесцентйые методы, основанные на измерении флуоресценции, био- и хеми-люми несценции. [c.231] В-третьих, многие компоненты обладают очень низкой устойчивостью. Часто задача состоит в том, чтобы выделить тот или иной биополимер в нативном, т.е. сохраняющем биологическую активность, состоянии. Между тем многие белки и высокополимерные нуклеиновые кислоты при умеренных температурах и незначительных изменениях pH среды подвержены необратимому изменению конформации — денатурации, которая обычно сопровождается потерей биологической активности — инактивацией. Кроме того, в клетках часто находятся ферменты, способные разрушать те или иные вещества. В первую очередь это относится к белкам и нуклеиновым кислотам, так как клетки обычно содержат ферменты, способные катализировать гидролиз этих биополимеров, — протеазы и нуклеазы. В неповрежденных клетках эти ферменты преимущественно сосредоточены в специальных гранулах — лизосомах. Однако при разрушении клеток или тканей, которое всегда предшествует началу работ по выделению интересующих исследователя веществ, лизосомы обычно разрушаются, ферменты выходят наружу, что приводит к быстрому разрушению биополимеров уже в исходной биомассе. [c.231] Но особенно революционизирующее влияние на экспериментальные возможт ности биохимии оказало применение ферментов матричного биосинтеза, в первую очередь ДНК-полимераз. Аналитические возможности в биохимии нуклеиновых кислот неизмеримо возросли с появлением амплификации, т.е. размножстия молекул ДНК с определенной последовательностью нуклеотидов с помощью ДНК-полимеразы. Применение прямой и обратной транскрипции позволило перенести многие методы, разработанные применительно к ДНК, на рибонуклеиновые кислоты (см. 7.6). [c.232] Способность живых организмов и самих молекул ДНК к размножению открыла широкую дорогу селекционным методам для решения биохимических задач. Возможность вырезания из ДНК определенных генов, получения их путем обратной транскрипции матричных РНК и разработка методов искусственного химикоферментативного синтеза генов позволили манипулировать генами, в том числе вставлять их в плазмиды или вирусы, а затем вносить их в микроорганизмы для последующего размножения. Микробиологические методы позволили разработать методы селекции тех популяций микроорганизмов (клонов), которые выросли из отдельных клеток несущих желаемые признаки, например способных продуцировать определенные белки, не свойственные этим организмам. Так родилась Г ная инженерия, которая не только открыла новые горизонты в биотехнологии, но и стала важнейшим инструментом биохимических исследований. [c.232] Наконец, селекция ДНК или РНК из искусственно созданной смеси огромного числа различных молекул нуклеиновых кислот с последующим размножением отобранных ДНК путем амплификации открыла путь к созданию нуклеиновых кислот с самыми разнообразными заданными свойствами. Все эти новые подходы также будут описаны в соответствующих параграфах этой главы. [c.232] Вернуться к основной статье