ПОИСК Статьи Рисунки Таблицы Методы разделения и концеитрироваиия из "Аналитическая химия" Если проба не растворяется полностью в кислоте, ее подвергают сплавлению при нагревании в тигле нз специального материала (платина, цирконии, никель, фарфор). По охлаждении расплав растворяют в воде нли разлагают необходимой кислотой (операция выщелачивания). При щелочном сплавлении в качестве плавней применяют карбонаты, гидроксиды, бораты щелочных металлов и их смеси, а также обладающие окислительным действием пероксиды. Реже используют кислые расплавы, напрнмер пиросульфат и гндросульфат калия, оксид бора. Если твердый реагент имеет очень высокую температуру плавления (например, оксид или карбонат кальция), то проводят не сплавление, а спекание. Разложение этим методом ведут обычно при более высоких температурах (до 1000 °С), при которых реакции, протекающие в спекаемой смеси, происходят более интенсивно. [c.66] Органические соединения обычно разлагают (минерализуют) при помощи окислительных методов сухим озолением, мокрым озолением или сплавлением. При сухом озолении анализируемое вещество нагревают на воздухе, в токе кислорода (например, в стеклянной илн кварцевой трубке) нли в закрытом сосуде (кислородная бомба). По мере сгорания пробы ряд интересующих элементов (углерод, водород, азот, кислород, галогены, сера) превращается в газообразные продукты. Продукты сжигания поглощают подходящим поглотителем или растворителем и затем анализируют тем нли иным методом (часто простым. взвешиванием), в том числе в автоматическом режиме, используя газоанализаторы. [c.66] Иногда для перевода определяемых элементов в удобную для анализа форму пробу подвергают восстановительному разложению, нагревая с сильным восстановителем — металлическим натрием или калием. Этот метод особенно удобен при анализе органических соединений, содержащих галогены. [c.67] Составной частью стадии подготовки пробы является разделение и концентрирование ее компонентов. Эти операции имеют целью предотвратить мешающее действие посторонних веществ и повысить концентрацию определяемого компонента. Их необходимость обусловлена двумя проблемами. [c.67] Прежде всего многим аналитическим методам присущ общий недостаток — невысокая избирательность определения. Этот недостаток связан с тем, что химические и физические свойства веществ, на которых основаны аналитические методы, редко бывают специфичными. Поэтому присутствие посторонних веществ не только сказывается на правильности, чувствительности и воспроизводимости определения, но и может привести к ситуации, когда определение становится невозможным. В силу этого перед определением данного компонента необходимо устранить мешающее влияние остальных компонентов пробы. В принципе здесь возможны два пути. Можно изменить состав анализируемого раствора химически таким образом, что мешающий компонент становится неактивным. Типичными примерами служат изменение степени окисления этого компонента или введение комплексообразующего реагента, избирательно взаимодействующего с мешающим веществом и уменьшающего его концентрацию до уровня, при котором мешающим влиянием можно пренебречь. В последнем случае говорят о маскировании, которое можно также понимать как внутреннее разделение. В последующих главах будут приведены многочисленные примеры использования этого приема в анализе. [c.67] Другой Прием дает возможность устранить мешающее влияние посторонних веществ путем физического отделения этих веществ от определяемого нлн избирательного выделения определяемого вещества нз анализируемой смеси. [c.68] Еще одна проблема, с которой часто встречаются химики-аналитики в своей практике, такова концентрация определяемого компонента ниже предела чувствительности данного метода. В этом случае необязательно обращаться к другому, более чувствительному методу. Достаточно выделить и сконцентрировать данный компонент тем нлн иным методом. Различают абсолютное и относительное концентрирование (рнс. 4.1). Абсолютное концентрирование подразумевает увеличение концентрации всех микрокомпонентов пробы, напрнмер прн их переводе нз большого объема раствора в малый. Однако чаще требуется провести относительное концентрирование с отделением определяемого мнкрокомпо-нента от мешающих макрокомпонентов (нлн удалением последних). Таким образом, методы концентрирования непосредственно смыкаются с методами разделения. [c.68] Все сказанное в равной степени относится и к качественному анализу, когда для обнаружения и идентификации определенного компонента в анализируемой пробе практически всегда приходится предварительно выделять его либо отделять компоненты, мешающие обнаружению. Если чувствительность аналитической реакции оказывается недостаточной, т. е. концентрация искомого вещества ниже открываемого минимума, необходимо провести предварительное концентрирование. [c.68] Применяемые в аналитической хнмнн методы разделения и концентрирования веществ весьма разнообразны и основываются на различных принципах и различных свойствах веществ (размер частиц, летучесть, растворимость, скорость движения в электрическом поле, адсорбционные и ионообменные свойства, комплексообразующая способность). Однако общим для большинства методов является избирательное распределение компонентов анализируемой смеси между двумз фазами нлн избирательный перенос вещества нз одной фазы в другую. [c.68] Для количественной характеристики методов разделения н концентрирования применяют трн основных параметра. [c.69] В основу классификации можно положить не только число и агрегатное состояние фаз, но и другой принцип — степень превращения разделяемых веществ. Химическим превращением веществ сопровождаются методы, связанные с осаждением, ионным обменом, выделением газа. При электролизе происходит электрохимическое изменение вещества. Группу методов разделения без превращения вещества представляют хроматография, дистилляция, кристаллизация, зонная плавка, молекулярная седиментация н др. Методы разделения и концентрирования могут быть разделены и по числу (кратности) распределений между фазами — однократные и многократные. [c.71] В данной главе будут рассмотрены подробно только некоторые, наиболее часто использующиеся и интересные в аналитическом аспекте методы разделения н концентрирования. [c.71] Сущность метода осаждения состоит, таким образом, в том, что для эффективного разделения (нлн концентрирования) используют различия в растворимости соединений определяемого и мешающего элементов (преимущественно в водной среде). Возможность и оптимальные условия разделения определяются главным образом величинами произведения растворимости соответствующих соединений (подробнее см. гл. 2, 11). [c.71] Реакции осаждения с использованием групповых реагентов лежат в основе систематического качественного анализа (см. гл. 6—10). Так, катионы обычно разделяют на несколько групп при помощи ионов хлора, сульфида и карбоната, а схема систематического хода анализа анионов основывается на их осаждении под действием различных катионов (в основном это Ba + и Ад+). [c.72] Задачу отделения и концентрирования микрограммовых количеств микрокомпонентов от макрокомпонентов, как правило, не удается решить простым осаждением. Поэтому в подобных случаях прибегают к осаждению на коллекторе или соосаждению, основанному на том, что отделяемые ионы выделяются в осадок с развитой поверхностью, который и называется коллектором. Для этого в раствор добавляют небольшие количества какого-либо постороннего иона (несколько миллиграммов), также образующего осадок с данным реагентом. Таким образом можно сконцентрировать, например, ионы никеля, используя в качестве коллектора гидроксид магния, или удалить несколько микрограммов 2п и РЬ из большого объема раствора, в который вносят медь, путем осаждения сульфид-ионами. Кроме малорастворимых гидроксидов и сульфидов коллекторами могут служить галогениды, карбонаты, фосфаты. Но особенно удобно проводить соосаж-дение ионов металлов на органических коллекторах (например, 8-гидроксихинолинат цинка при соосаждении магния), легко затем удаляющихся сожжением. [c.72] Действие коллектора может быть связано с соосаждением за счет адсорбции или образования смешанных кристаллов, а также с простым механическим захватом осадка микрокомпонента (окклюзия) (подробнее см. гл. 2.11). [c.72] По простоте, аппаратурному оформлению и степени абсолютного концентрирования осаждение является одним из лучших методов концентрирования. Однако вследствие большой длительности и трудоемкости этот метод уступает, например, такому методу, как экстракция. [c.72] Вернуться к основной статье