Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English
Из курса физической химии известно, что термодинамическая вероятность протекания химических реакций, независимо от того, являются они или нет термическими или каталитическими (поскольку катализатор не влияет на равновесие реакций), определяется знаком и величиной изменения свободной энергии Гиббса (ДZ) у-й реакции.

ПОИСК





Основы химической термодинамики термических реакций углеводородов

из "Технология, экономика и автоматизация процессов переработки нефти и газа"

Из курса физической химии известно, что термодинамическая вероятность протекания химических реакций, независимо от того, являются они или нет термическими или каталитическими (поскольку катализатор не влияет на равновесие реакций), определяется знаком и величиной изменения свободной энергии Гиббса (ДZ) у-й реакции. [c.155]
В табл. 5.1 приведены данные по свободной энергии образования некоторых углеводородов при различных температурах и стандартном давлении (101325 Па). Видно, что значение для всех углеводородов зависит от молекулярной структуры и существенно возрастает с ростом их молекулярной массы и повышением температуры (кроме ацетилена). Из этих данных следует вывод о том, что высокомолекулярные углеводороды, обладающие, по сравнению с низкомолекулярными, большим запасом энергии образования AZ y, термически менее стабильны и более склонны к реакциям распада, особенно при высоких температурах термолиза. [c.156]
Поскольку в реакциях крекинга из исходных высокомолекулярных углеводородов образуются низкомолекулярные, а при синтезе, наоборот, низкомолекулярные превращаются в высокомолекулярные продукты, то эти две группы реакций термолиза должны антибатно различаться не только по тепловым эффектам (эндо- и экзотермические), но и по температурной зависимости энергии Гиббса ДZy. [c.156]
Как следует из рис. 5.1, значения ДZy с ростом температуры уменьшаются для эндотермических реакций крекинга углеводородов и повышаются для экзотермических реакций синтеза (на рисунке отложены отрицательные значения ДZy). Это означает, что термодинамическая вероятность протекания реакций возрастает в эндотермических реакциях крекинга с повышением температуры, а в экзотермических реакциях синтеза — наоборот, при понижении температуры. По этому признаку реакции крекинга являются термодинамически высокотемпературными, а синтеза — термодинамически низкотемпературными. [c.156]
Качественно аналогичный вывод вытекает и из принципа Ле-Шателье повышение температуры способствует протеканию эндотермических реакций слева направо, а экзотермических реакций — в обратном направлении. [c.156]
Для реакций, идущих с изменением мольности, т. е. объема системы, на состояние равновесия оказывает влияние не только температура, но и давление. Исходя из принципа Ле-Шателье следует, что повышение давления способствует реакциям синтеза, идущим с уменьшением объема. Наоборот, для реакций крекинга, идущих с увеличением объема, благоприятны низкие давления. Для реакций, протекающих без изменения объема, таких как изомеризация или замещение, давление не оказывает влияния на их равновесие. [c.158]
Сокращения и — изо т — третичный ц — циклический. [c.159]
Для прогнозирования вероятности образования того или иного продукта реакций в термодинамике пользуются данными по энергиям связи в химических веществах. [c.159]
Из сопоставительного анализа данных, приведенных в табл. 5.2, можно сформулировать некоторые качественные выводы о влиянии структуры и массы молекул углеводородов на величину энергий разрыва связей между атомами углерода, углерода с водородом и углерода с серой. [c.160]
Очевидно, что при термолизе углеводородного сырья будут разрываться в первую очередь наиболее слабые связи и образовываться продукты преимущественно с меньшей свободной энергией образования. Таким образом, термодинамический анализ позволяет прогнозировать компонентный состав и подсчитать равновесные концентрации компонентов в продуктах реакций в зависимости от условий проведения термических, а также каталитических процессов. Однако компонентный состав и концентрации продуктов химических реакций в реальных промышленных процессах не всегда совпадают с результатами термодинамических расчетов. [c.161]
При проектировании, математическом моделировании, оптимизации, научных исследованиях и решении проблем интенсификации химико-технологических процессов принято пользоваться кинетическими закономерностями химических реакций. [c.161]
Не следует противопоставлять химическую кинетику и химическую термодинамику. На основе термодинамических закономерностей проектировщик, инженер или исследователь устанавливает в целом наиболее благоприятную, с точки зрения выхода целевого продукта, область протекания химических реакций. Химическая же кинетика позволяет в термодинамически разрешенной области рассчитать концентрации (не равновесные, а кинетические) продуктов реакций, материальный баланс, геометрические размеры реакционных аппаратов и оптимизировать технологические параметры процессов. [c.161]


Вернуться к основной статье


© 2025 chem21.info Реклама на сайте