ПОИСК Статьи Рисунки Таблицы Влияние качества сырья и технологических параметров на процесс термолиза нефтяных остатков из "Технология, экономика и автоматизация процессов переработки нефти и газа" Жидкофазный термолиз имеет место в таких термодеструктивных процессах нефтепереработки, как термический крекинг, висбрекинг, пекование и коксование тяжелых нефтяных остатков. [c.173] Основной отличительной кинетической особенностью жидкофазных химических реакций является высокая, превышающая на два-три порядка, чем в газофазных, концентрация реагирующих веществ в единице объема реактора. В силу этого проведение реакций в жидкофазном состоянии при атмосферном давлении равносильно проведению их в газовой фазе под давлением порядка 10-100 МПа. Это означает, что в жидкофазных процессах будет значительно выше вероятность столкновения реагирующих молекул, в результате преимущественно ускоряются вторичные бимолекулярные реакции. При этом, однако, низкомолекулярные продукты первичного распада высокомолекулярного сырья и алкильные радикалы в зависимости от условий проведения процесса могут разлетаться в газовую фазу и не участвовать во вторичных жидкофазных реакциях. В этих условиях цепной процесс жидкофазного термолиза нефтяного сырья будет осуществляться с участием более высокомолекулярных, так называемых долгоживущих бензиль-ных и фенильных радикалов. В результате при равных температурах жидкофазный термолиз углеводородов дает значительно больший выход продуктов конденсации и меньший выход продуктов распада. [c.173] На суммарный результат жидкофазного термолиза нефтяного сырья существенное влияние оказывает клеточный эффект . При газофазном распаде молекулы углеводорода образующиеся радикалы мгновенно разлетаются. В жидкой же фазе радикалы окружены клеткой из соседних молекул. Для удаления радикалов на расстояние, при котором они становятся кинетически независимыми частицами, необходимо преодолеть дополнительный активационный барьер, равный энергии активации диффузии радикала из клетки. Тем самым клеточный эффект приводит к изменению энергии активации жидкофазной реакции относительно газофазной, а также стационарной концентрации радикалов. [c.173] Из результатов многочисленных исследований зарубежных и отечественных ученых отметим следующие общепризнанные закономерности жидкофазного термолиза нефтяного сырья. [c.173] Останавливая процесс термолиза на любой стадии, т. е. регулируя глубину превращения ТНО, можно получить продукты требуемой степени ароматизации или уплотнения, например, крекинг-остаток с определенным содержанием смол и асфальтенов и умеренным количеством карбенов, кокс с требуемой структурой и анизотропией. [c.175] Таким образом, можно заключить, что термодеструктивные процессы переработки ТНО, особенно коксования, представляют собой исключительно сложные многофакторные нестационарные гетерогенные и гетерофазные диффузионные процессы со специфическим гидродинамическим, массообменным и тепловым режимом. [c.175] Нефтяные коксы с высокой упорядоченностью, в частности игольчатые, получаются только из ароматизированных дистиллятных видов сырья с низким содержанием гетеросоединений (дистиллятные крекинг-остатки, смолы пиролиза, тяжелые газойли каталитического крекинга, экстракты масляного производства и др.). В связи с этим в последние годы значительное внимание уделяется как в России, так и за рубежом проблеме предварительной подготовки сырья для процесса коксования и термополиконденсации. [c.176] Временную зависимость процесса термолиза при заданных температуре и давлении можно представить следующим образом (рис. 5.2). При термолизе ТНО в начале процесса в результате радикально-цепных реакций распада и поликонденсации происходит накопление в жидкой фазе полициклических ароматических углеводородов, смол и асфальтенов (т. е. происходит как бы последовательно химическая эволюция групповых компонентов). Признаком последовательности протекания сложных реакций в химической кинетике общепринято считать наличие экстремума на кинетических кривых для концентрации промежуточных продуктов. Как видно из рис. 5.2, при термолизе ТНО таковые экстремумы имеются для полициклических ароматических углеводородов. [c.176] Влияние температуры. Поскольку значения энергии активации отдельных реакций термолиза различаются между собой весьма существенно, то температура как параметр управления процессом позволяет обеспечить не только требуемую скорость термолиза, а прежде всего регулировать соотношение между скоростями распада и уплотнения и, что особенно важно, между скоростями реакций поликонденсации, тем самым свойства фаз и условия кристаллизации мезофазы. При этом регулированием продолжительности термолиза представляется возможным обрывать на требуемой стадии химическую эволюцию в зависимости от целевого назначения процесса. С позиций получения кокса с лучшей упорядоченностью структуры коксование сырья целесообразно проводить при оптимальной температуре. При пониженной температуре ввиду малой скорости реакций деструкции в продуктах термолиза будут преобладать нафтено-ароматические структуры с короткими алкильными цепями, которые будут препятствовать дальнейшим реакциям уплотнения и формированию мезофазы. При температуре выше оптимальной скорость реакций деструкции и поликонденсации резко возрастают. Вследствие мгновенного образования большого числа центров кристаллизации коксующийся слой быстро теряет пластичность, в результате чего образуется дисперсная система с преобладанием мелких кристаллов. Возникающие при этом сшивки и связи между соседними кристаллами затрудняют перемещение и рост ароматических структур. Более упорядоченная структура кокса получается при средней (оптимальной) температуре коксования (= 480 °С), когда скорость реакций деструкции и уплотнения соизмерима с кинетикой роста мезофазы. Коксующий слой при этом более длительное время остается пластичным, что способствует формированию крупных сфер мезофазы и более совершенных кристаллитов кокса. [c.177] Коэффициент рециркуляции. Газойлевая фракция коксования содержит в своем составе около 30 0 % полициклических ароматических углеводородов. Поэтому рециркуляция этой фракции позволяет ароматизировать и повысить агрегативную устойчивость вторичного сырья и улучшить условия формирования надмолекулярных образований и структуру кокса. Однако чрезмерное повышение коэффициента рециркуляции приводит к снижению производительности установок по первичному сырью и по коксу и к возрастанию эксплуатационных затрат. Повышенный коэффициент рециркуляции (1,4-1,8) оправдан лишь в случае производства высококачественного, например, игольчатого кокса. Процессы коксования прямогонных остаточных видов сырья рекомендуется проводить с низким коэффициентом или без рециркуляции газойлевой фракции. [c.178] Вернуться к основной статье