Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English
Проблема изменчивости микробов стала предметом для дискуссий со времени возникновения микробиологии как науки. С 70-х годов XIX ст. до наших дней изменчивость представляет одну из ярких и увлекательных глав микробиологии. Изучение изменчивости бактерий принесло много ценного материала для создания картины онтогенетического развития многих видов. Экспериментальная изменчивость по мнению крупнейших специалистов по систематике бактерий может служить одним из плодотворнейших методов выяснения места организма в системе при попытке установления филогенетического родства. Лабораторная изменчивость в эксперименте помогает определить границы вида и рода бактерий.

ПОИСК





Изменчивость и генетика бактерий

из "Микробиология очистки воды"

Проблема изменчивости микробов стала предметом для дискуссий со времени возникновения микробиологии как науки. С 70-х годов XIX ст. до наших дней изменчивость представляет одну из ярких и увлекательных глав микробиологии. Изучение изменчивости бактерий принесло много ценного материала для создания картины онтогенетического развития многих видов. Экспериментальная изменчивость по мнению крупнейших специалистов по систематике бактерий может служить одним из плодотворнейших методов выяснения места организма в системе при попытке установления филогенетического родства. Лабораторная изменчивость в эксперименте помогает определить границы вида и рода бактерий. [c.97]
Изменчивость прокариотов и эукариотов должна рассматриваться раздельно, так как прокариотам не свойствен тот ха-зактер изменчивости, который сопряжен с половым процессом. 3 то же время для грибов и водорослей (кроме синезеленых) как эукариотических организмов характерно множество возможностей, вытекающих из комбинации признаков родительских организмов при образовании диплоидных клеток в результате слияния гомозиготных и гетерозиготных гамет. [c.97]
Надсон [188] различал несколько категорий изменчивости. Изменчивость, проявляющаяся при смене стадий жизни, т. е. по мере развития и старения культур меняются размеры, а иногда и форма клеток, у некоторых видов появляются неразличимые в оптическом микроскопе образования — фильтрующиеся формы (онтогенетическая изменчивость). Цикл развития, или онтогенез, культуры у некоторых видов бактерий довольно сложный. У бактерий, как и у высших организмов, нет двух абсолютно одинаковых организмов. Представители одного вида могут различаться по форме, величине клетки и по биохимическим свойствам. Это индивидуальная изменчивость. Третья категория изменчивости — групповая изменчивость. Целые микробные популяции, развивающиеся в различных изолированных пространствах, могут приобретать или утрачивать какие-то признаки Образуются варианты различной степени устойчивости, т. е. они могут быть временными или же относительно долгое время сохраняющимися. Это формы изменчивости, именуемые модификациями. [c.98]
Далее Г. А. Надсон отмечает, что в 1920 г. им была обнаружена изменчивость микробов под влиянием радиевых и рентгеновых лучей, происходящая скачкообразно. Эти скачкообразные изменения наследственны, и для отличия от мутаций у растений и животных автор предложил называть их сальтациями (от латинского saltus — скачок). Этот термин не удержался в литературе, и явление внезапной наследственной изменчивости микроорганизмов считается мутационной изменчивостью. Мутанты, возникшие под влиянием обработки культуры радиацией или химическими реагентами, относятся к категории индуцированных мутантов в отличие от возникающих естественно при неучитываемом действии среды. [c.98]
Изучение изменчивости патогенных бактерий привело к открытию вакцин и созданию современных методов диагностики инфекционных заболеваний. Использование экспериментального мутагенеза позволило соз гать высокоактивные расы и мутанты продуцентов антибиотиков. Литература по изменчивости кишечных бактерий (Г. П. Калина [116] и Д. Г. Кудлай [152]), дрожжей (В. И. Кудрявцев [154, 155]), анаэробных целлюлозных бактерий (М. Н. Ротмистров [220]) позволяет считать исследования в этой области очень важными. Нельзя сомневаться, что исследования по изменчивости и селекции микробов, разрушающих синтетические загрязнители промышленных стоков, окажутся не менее плодотворными. [c.99]
По мере развития промышленности число новых химических соединений, применяемых в быту, в промышленной и сельскохозяйственной деятельности человека, резко увеличилось. Множество химических соединений различных классов самого разнообразного назначения или просто представляющих собой отбросы и побочные продукты химических производств попадают в сточные воды, в почву, а затем уносятся в естественные водоемы. К таким соединениям относятся альдегиды, кетоны, эфиры, карбоновые кислоты и их соли или эфиры, спирты, как алифатические, так и ароматические, нитро- и галоидпроиз-водные ароматических соединений и множество различных по строению детергентов или поверхностно-активцых веществ (ПАВ). [c.99]
Среди продуктов органического синтеза выявляется все больше соединений, обладающих резко выраженным ингибирующим, цитотоксическим и биоцидным действием на клетки многих живых организмов. Такие соединения все шире применяются для борьбы с разными вредоносными организмами. Планомерно ведутся изыскания дезинфицирующих средств, инсектицидов, фунгицидов, дефолиантов, средств дератизации и прочих химических веществ, применяемых для девастации (истребление возбудителей инфекционных и инвазионных заболеваний человека, животных и растений). Химизация народного хозяйства и, в частности, сельского хозяйства привела к тому, что множество галоидорганических, фосфорорганических и других соединений, объединяемых в понятие пестициды, производятся в огромных количествах, в процессе практического применения эти соединения попадают в почву, а затем в водоемы. Нельзя не упомянуть о том, что многочисленные, относительно безвредные для живой природы синтетические соединения в виде разного рода упаковочных материалов и пластмасс бытового и промышленного назначения также накопляются в почве, в свалочных местах и на дне водоемов. [c.99]
Известно, что многие химические вещества, получаемые путем органического синтеза, разрушаются микроорганизмами в почве и водоемах или очистных сооружениях, т. в. в природе есть микроорганизмы, способные адаптироваться к этим соединениям. Имеющиеся наблюдения нашли отражение в научной периодической печати. Некоторые синтетические вещества возможно подвержены микробному разложению, но пока не попали в поле зрения микробиологов и биохимиков. Несомненно, что уже создано и продолжает создаваться химической промышленностью много таких веществ, которые трудно разрушаются микроорганизмами, причем это зависит либо от химического строения вещества, либо от того, что оно имеет трудно атакуемую микробами форму в результате вторичной промышленной обработки — прессование под большим давлением, полировка поверхности и покрытие ее антикоррозионными материалами. [c.100]
Остановимся кратко на анализе причин и условий проявления биохимической активности микроорганизмов в естественных условиях обитания. [c.100]
Трансформация органических веществ или их микробная деструкция, используемая человеком в процессе народнохозяйственной деятельности, становится возможной потому, что многие микроорганизмы способны удовлетворять свои пищевые потребности за счет углерода и азота разнообразнейших органических соединений, в том числе и синтетических, а энергетические за счет утилизации химической энергии, освобождаемой при трансформации либо расщеплении этих органических веществ на более простые. [c.100]
Наиболее широко распространенные в природе органические вещества и предопределяли направление эволюции биохимических процессов в микробном мире. Однако следует указать, что не все приспособительные реакции микроорганизмов, а особенно бактерий, наследственно закреплены и являются следствием эволюции. Многочисленные изменения биохимических свойств и даже некоторых физиологических особенностей являются обратимыми и, по-видимому, представляют собой модификации. Адаптивная изменчивость микрофлоры, так широко известная при очистке промышленных сточных вод, представляется явлением сложным, где безусловно приходится сталкиваться с проявлением различных категорий изменчивости микроорганизмов. Те формы адаптации, где приобретенное свойство закреплено наследственно, образуются в результате мутационной изменчивости и отбора мутантов средой. Часто встречаемая, легко обратимая изменчивость представляет собой модификации. [c.101]
Генетический код, ДНК как носитель наследственности предопределяет и свойства белков, синтезируемых в клетке. Иначе говоря, в ДНК закодированы свойства белков каждого вида микроорганизмов, т, е, присущая им специфичность. Особенности белков, их индивидуальные свойства находятся в зависимости от последовательности расположения аминокислот, входящих в состав пептидной цепи, которая в свою очередь предопределяется конкретным участком ДНК, состоящим из нескольких пар азотистых оснований, точнее — из нескольких нуклеотидов. То число нуклеотидов, от которых зависит включение при биосинтезе белка одной аминокислоты, получило название кодона. Один кодон содержит, как правило, три азотистых основания. Отсюда термин триплетный кодон, или триплет. Аденин, тимин, гуанин и цитозин — это азотистые основания, компоненты ДНК, из которых и состоят кодоны. Например, аденин, тимин, тимин (АТТ) аденин, цитозин, цитозин (АЦЦ) или — гуанин, аденин, цитозин (ГАЦ) и т. п. Кодоны, состоящие из трех азотистых оснований, способны обусловить включение всех 20 аминокислот, входящих в состав белков, в синтезируемый полипептид. Последовательный порядок триплетов ГНК предопределяет последовательный порядок аминокислот поли-пептидной цепочки. Если один триплет (кодон) обусловливает включение одной аминокислоты, тогда код называют невырожденным. Если же включение одной аминокислоты детерминировано несколькими кодонами, код называется вырожденным. [c.103]
функции нуклеиновых кислот в микробной клетке дифференцированы. Даже ДНК клетки не все принадлежат к ГНК. Не говоря о том, что у вирусов роль ГНК выполняют двухцепочечные РНК и одноцепочечные ДНК и РНК. Двухцепочные ДНК по своим свойствам и структуре принадлежат к соединениям более устойчивым и консервативным, поэтому отобраны эволюцией для хранения наследственной информации. Клетка как бы экономит ДНК, привлекая для выполнения различных функций более подвижные, динамичные нуклеиновые кислоты — РНК. [c.104]
Биологический синтез белка представляет собой сложный, многофазный или многоступенчатый процесс. Помимо РНК в синтезе белков принимают участие многочисленные ферменты. На первой ступени активируются аминокислоты, соединяющиеся потом в пептидные цепочки. Вторая ступень — транспорт активированных аминокислот к рибосомам. Третья ступень представляет собой упорядочение и сочетание инициированных аминокислот и расположение их в необходимой последовательности на матричной РНК с последующим замыканием пептидных связей. Четвертая ступень — формирование из линейной молекулы объемной структуры, свойственной данному белку. Повышение реакционной способности, активация аминокислот увеличивает возможности взаимодействия их друг с другом осуществляется этот процесс при взаимодействии аминокислот с аденозинтрифосфорной кислотой (АТФ). При этом происходит передача энергии одной макроэргической связи АТФ на аминокислоту, переходящую на более высокий энергетический уровень. Реакция активации аминокислот протекает с участием фермента аминоацил-РНК-синтетазы. Для активации различных аминокислот необходимы разные ферменты — синтетазы. Аминокислотная последовательность при синтезе осуществляется кодонами (фрагментами цепи ДНК). [c.105]
В настоящее время с помощью ДНК У бактерий трансформированы следующие признаки капсульные и поверхностно-соматические антигены, резистентность к антибиотикам и некоторым другим веществам, способность синтезировать различные аминокислоты и другие факторы роста, способность использовать углеводы. Полагают также, что трансформация бактерий может происходить в природе, приводя к формированию популяций с атипичными признаками. [c.108]
Наряду с неспецифической существует специфическая трансдукция. Например, фаг Я всегда располагается на хромосоме бактерии-донора по соседству с геном, ответственным за синтез р-галактозидазы, и специфически переносит этот ген в клетки реципиента, неспособные синтезировать данный фермент. Выделяют еще абортивную трансдукцию, когда трансдуцированный участок ДНК не интегрируется в клетке и не реплицируется. Наличие его устанавливают, благодаря обнаружению продукта, за образование которого отвечает данный ген. При размножении культуры наблюдается разбавление этого продукта, поскольку клетки не передают трансдуцированный ген друг другу. По этому признаку и определяют характер происшедшей трансдукции. [c.109]


Вернуться к основной статье


© 2025 chem21.info Реклама на сайте