Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English
Растворимость—свойство растворов, экспериментально наи-более изученное. Огромный материал по растворимости различных веществ в воде и неводных растворителях, накопленный несколькими поколениями исследователей, лишь частично освещен в справочнике Сайделла [4], в Справочнике по растворимости солевых систем [5] и ряде других изданий справочного характера.

ПОИСК





Теория растворимости. Правило Семенченко

из "Введение в молекулярную теорию растворов"

Растворимость—свойство растворов, экспериментально наи-более изученное. Огромный материал по растворимости различных веществ в воде и неводных растворителях, накопленный несколькими поколениями исследователей, лишь частично освещен в справочнике Сайделла [4], в Справочнике по растворимости солевых систем [5] и ряде других изданий справочного характера. [c.455]
Что касается теории растворимости, то здесь пока достигнуты значительно меньп2ие успехи. До настоящего времени количественный теоретический расчет растворимости в большинстве случаев остается невыполнимым. Успехи теории ограничиваются главным образом отысканием качественных и полуколичественных закономерностей, оправдывающихся в большем или меньшем числе случаев. [c.456]
Нельзя сказать, что теория растворимости мало привлекала к себе внимание исследователей. Растворимость—одно из наиболее ярких проявлений действия межмолекулярных сил. В то же время методы измерения растворимости просты, доступны и сравнительно хорошо разработайы. Количественная теория растворимости открыла бы большие возможности для познания законов действия межмолекулярных сил в концентрированных растворах и для изучения внутреннего строения растворов. Поэтому построение количественной теории растворимости—очень важная задача. Попытки создания теории растворимости делаются давно. Так, И. Ф. Шредером была выведена формула растворимости в случае идеальных растворов. Г. Гильдебранд вывел уравнение растворимости так называемых регулярных растворов и широко использовал это уравнение для объяснения растворимости неэлектролитов. Вальден установил, что для растворов, компоненты которых неполярны, взаимная растворимость тем больше, чем меньше разность внутренних давлений этих компонентов в чистом виде. Этот же исследователь показал, что для многих электролитов растворимость возрастает пропорционально кубу диэлектрической постоянной растворителя, в то время как для некоторых органических соединений она уменьшается но этому же закону [7]. Попытки установления количественной связи между растворимостью и составом растворов нредпринимались И. М. Сеченовым, Ван Лааром и многими другими ). В последние годы М. И. Шахпароновым была предпринята попытка построения общей теории растворимости [8,9.] Основное затруднение, препятствующее построению количественной теории растворимости, состоит в том, что объектом теории являются главным образом концентрированные растворы. Насыщенный раствор во многих случаях, представляющих теоретический интерес,—это раствор концентрированный. [c.456]
в главах VI и VII, нами уже были рассмотрены некоторые аспекты теории растворимости. В главе VI был дан краткий обзор типов диаграмм растворимости твердых тел или плавкости (что в принципе одно и то же). В главе VII была рассмотрена термодинамическая теория растворимости в идеальных растворах. Здесь будут изложены общая теория растворимости и некоторые частные проблемы. [c.457]
Процесс растворения весьма сходен с процессом испарения. При испарении молекулы переходят в газовую фазу, где межмолекулярное поле обладает относительно малой интенсивностью. При растворении молекулы переходят в жидкую фазу (растворитель), где межмолекулярное поле во много раз интенсивнее, чем в газообразной среде. Растворение протекает под влиянием факторов, нередко действующих в противоположных направлениях это, во-первых, изменение энтропии и, во-вторых, изменение внутренней энергии компонентов системы. Под влиянием этих факторов в процессе растворения постепенно меняются химические потенциалы растворителя и растворенного вещества . =Н —7S. Растворение прекращается при достижении такой концентрации, при которой химический потенциал растворяющегося вещества в растворе оказывается равным химическому потенциалу этого вещества в чистой фазе. [c.457]
Энтропия системы в целом (если система адиабатически изолирована) в результате процесса растворения всегда увеличивается. Но это не означает, что всегда увеличиваются и парциальные молярные энтропии iSf всех компонентов раствора (см. гл. VIII). [c.457]
Неравенство молекулярных полей растворителя и растворенного вещества всегда препятствует растворению ). Но наряду с этим молекулы растворителя и растворенного вещества во многих случаях вступают в специфические химические взаимодействия, что способствует образованию раствора. В тех случаях, когда молекулярные поля растворителя и растворенного вещества в растворе оказываются одинаковыми, т. е. раствор является идеальным (или псевдоидеальньш), растворимость следует уравнению Шредера. [c.457]
Перейдем теперь к выводу уравнения растворимости [9]. [c.457]
Это уравнение является вполне строгим следствием термодинамики. [c.458]
Для ТОГО чтобы выяснить связь между- растворимостью и межмолекулярными силами, необходимо подставить в уравнение (11.9) значение в виде функции межмолекулярных взаимодействий. [c.459]
Воспользуемся с этой целью результатами теории концентрированных гомеодинамных растворов, изложенной в 7 главы IX. [c.459]
Можно воспользоваться также тем вариантом теории гомеодинамных растворов, который изложен в 9 главы IX. [c.459]
Уравненпе Сеченова было неоднократно использовано многими авторами. [c.460]
Уравнение Гильдебранда можно рассматривать как частный случай уравнения растворимости (11.14). В мопографии Гильдебранда и Скотта [12 это уравнение широко применяется при изложении вопросов, относящихся к растворимости неэлектролитов. [c.460]
Следовательно, при температуре ниже точки плавления Т равенство молекулярных полей компонентов ведет к растворимости, совпадающе с идеальной. Следует подчеркнуть, что при равенстве молекулярных полей полное смешение наступает только выше плавления обоих компонентов. [c.460]
Согласно (11.12) т может быть равно нулю в двух случаях. Во-первых, если обобщенные моменты равны, т. е. т° = т° , равны радиусы частиц, т. е. 8=1, и между частицами растворителя и растворенного вещества нет эффективного притяжения или отталкивания, т. е. т]=1. [c.460]
В этом случае раствор является идеальным. [c.460]
Если т о, то х /Д. в тех случаях, когда mff = т° , 110 размеры частиц растворителя и растворенного вещества неодинаковы (8 1), параметр т 0. Однако неравенство в размерах частиц не всегда уменьшает растворимость но сравнению с растворимостью в идеальном растворе. Разница в размерах частиц вызывает дополнительный рост энтронии согласно теории атермических растворов. Этот эффект ведет к отрицательным отклонениям от идеальности и росту растворимости. Влияние различия в размерах частиц на растворимость слагается из указанных двух противоположных тенденций. Поэтому в итоге оно невелико и, как правило, не учитывается. [c.461]
Таким образом, мы приходим к следующим выводам. [c.461]


Вернуться к основной статье


© 2024 chem21.info Реклама на сайте