ПОИСК Статьи Рисунки Таблицы Процессы окисления из "Аварии в химических производствах и меры их предупреждения" Процессы окисления наиболее распространены в химической технологии. В качестве окислительных агентов применяют кислород (кислород воздуха, технический кислород, смеси кислорода с азотом), азотную кислоту (окислы азота), перекись водорода, надуксусную кислоту и др. Различают полное и неполное окисление. Полным окислением называют процессы сгорания веществ с образованием двуокиси углерода, воды, окислов азота, серы и др. В промышленности в основном имеет значение неполное (частичное) окисление. Процессы окисления молекулярным кислородом подразделяют на жидкофазные и газофазные. [c.106] Жидкофазное окисление воздухом осуществляют при температурах от —10 до 160—180 С в присутствии катализаторов. Процесс ведут обычно под давлением с барботированием окисляющего агента через окисляемую жидкость. Реакции окисления в газовой фазе проводят при температурах от 180—200 до 400—500 °С и выше. Оптимальная температура реакции зависит от условий технологического процесса, катализатора, реакционной способности исходного вещества. [c.106] Азотную кислоту в виде 40—60%-ного водного раствора применяют для окисления циклических соединений и веществ с ненасыщенными связями. Перекисные соединения, главным образом перекись водорода и надуксусную кислоту, используют как окислительные агенты в основном органическом и нефтехимическом синтезе для реакций, компоненты которых не реагируют с молекулярным кислородом. [c.106] Опасность процессов окисления обусловливается главным образом способностью окислительных агентов образовывать с органическими соединения.ми взрывчатые смеси или нестабильные, склонные к разложению химические вещества. Данные о взрывчатых свойствах газообразных смесей углеводородов с воздухом и температурах вспышки жидких углеводородов приведены в гл. I. Пределы взрываемости паро- и газовоздушных смесей значительно расширяются при использовании в качестве окислительного агента чистого кислорода. Характеристика взрывоопасности некоторых газов в смеси с воздухом и кислородом приведена в табл. 9. [c.106] С образованием промежуточных нестабильных продуктов, накопление и быстрое разложение которых приводит к взрыву. Некоторые процессы окисления проводят при избытке окисляющего агента, что приводит к возможности образования в абгазах взрывоопасной смеси с непрореагировавшим кислородом. [c.107] При применении в качестве окислителей азотной кислоты, перекиси водорода, надуксусной кислоты взрывоопасность процесса в значительной степени возрастает, поскольку распад перекиси водорода и надуксусной кислоты происходит с выделением тепла (98,8 кДж/моль). [c.107] Разложение перекисных соединений происходит в присутствии некоторых металлов (железа, меди, марганца, кобальта, хрома) и их солей, являющихся катализаторами. Поэтому концентрированная перекись водорода, надуксусная кислота, а также ряд других перекисей способны взрываться в отсутствие органических веществ. [c.107] Скорость реакций окисления кислородом значительно увеличивается под влиянием освещения и при введении добавок инициаторов, способных к распаду (перекиси, гидроперекиси и др.). В то же время небольшие добавки ингибиторов (фенолов, аминов и др.) оказывают замедляющее действие на окислительный процесс. [c.107] В практике не всегда соблюдаются требования правил техники безопасности проведения процесса окисления, поэтому происходят аварии с разрушением зданий и оборудования и травмированием работающих. Так, на одном из предприятий произошла авария в производстве капролактама на стадии окисления циклогексана воздухом произошло загорание в верхней части аппарата. Процесс проводили при 140—150 Х и давлении 1,2—1,8 МПа. [c.107] Причина аварии — нарушение температурного режима. При понижении температуры реакции процесс окисления прекратился. Подача окислителя в реакционный аппарат продолжалась в прежних количествах, что привело к значительному превышению содержания кислорода в реакционной массе и образованию взрывоопасной смеси. Система автоматической подачи азота высокого давления, смонтированная на случай возникновения аварийной ситуации, не была включена, а аварийная сигнализация о превышении содержания кислорода и отклонении температуры от нормальных пределов отсутствовала. [c.108] Для предупреждения аварий при проведении процессов окисления принимают меры, исключающие возможность образования взрывоопасной среды при приготовлении шихты, направляемой в аппараты для окисления. Аппаратуру оснащают надежными средствами контроля и регулирования соотношения потоков окислителя и сырья, поступающих на окисление давления температуры и состава реакционной массы и абгазов. При прекращении подачи или падении давления сырья, поступающего на окисление, автоматически отключается подача воздуха. [c.108] Кроме того, принимают меры по предупреждению накопления в системе взрывоопасных промежуточных и побочных продуктов. Чтобы исключить образование взрывоопасных смесей, реакции неполного окисления проводят по возможности при недостатке окисляющего агента и с максимальным отводом тепла реакции. [c.108] Для контроля содержания кислорода в аппаратуре применяют газосигнализатор ГГМК-12, предназначенный для определения содержания кислорода в бинарных и многокомпонентных газовых смесях. Газоанализатор представляет собой прибор непрерывного действия, его выпускают со следующими шкалами 0—1, 0—2, О—5, О—10, О—21% (об.) кислорода. В составе анализируемой смеси в качестве нензмеряемых компонентов могут присутствовать азот, двуокись углерода, гелий, аргон, окись углерода и непредельные углеводороды до Сд включительно. Датчик газоанализатора ДК-6М выполнен во взрывонепроницаемом исполнении, его можно устанавливать во взрывоопасных помещениях всех классов. [c.108] Кроме обнаружения аварийной ситуации, газоанализатор может выполнять функции регулятора, т. е. осуществлять позиционное регулирование производственного процесса и тем самым предупреждать аварии. [c.108] в ряде процессов при достижении предельно допустимой концентрации кислорода, составляющей 0,5%, газоанализатор выдает команду на отсечные клапаны, и подача кислорода (воздуха) в реакционный аппарат прекращается. Газоанализатор ГГМК-12М практически можно включать в состав любой системы защиты от взрывов. [c.108] Вернуться к основной статье