ПОИСК Статьи Рисунки Таблицы Основные понятия и идеальные законы реологии из "Курс коллоидной химии Поверхностные явления и дисперсные системы" Таким образом, структурообразование в свободнодисперсных системах есть результат потери их агрегативной устойчивости. По мере увеличения прочности структуры свободнодисперсная система переходит в связнодисперсную систему. Появление и характер образующихся структур, как правило, определяют по механическим свойствам систем, к важнейшим из которых относятся вязкость, упругость, пластичность, прочность. Так как эти свойства непосредственно связаны со структурой тел, то их обычно называют структурно-механическими. [c.407] Структурно-механические свойства систем исследуют методами реологии — науки о деформациях и течении материальных систем. Реология изучает механические свойства систем по проявлению деформации под действием внешних напряжений. В коллоидной химии методы реологии используют для исследования структуры и описания вязкотекучих свойств дисперсных систем. [c.407] Термин деформация означает относительное смещение точек системы, при котором не нарушается ее сплошность. Деформацию делят на упругую и остаточную. При упругой деформации структура тела полностью восстанавливается после снятия нагрузки (напряжения) остаточная деформация необратима, изменения в системе остаются и после снятия нагрузки. Остаточная деформация, при которой не происходит разрушения тела, называется пластической. [c.407] Как следует из рис. VII.1, относительный сдвиг равен тангенсу угла сдвига а. [c.408] Жидкости и газы деформируются при наложении минимальных нагрузок. Под действием разности давлений они текут. Течение является одним из видов деформации, при котором величина деформации непрерывно увеличивается под действием постоянного давления (нагрузки). В отличие от газов жидкости при течении не сжимаются и их плотность остается практически постоянной. [c.408] Напряжение, вызывающее деформацию тела, определяется отношением силы к площади, па которую она действует. Действующая сила может быть разложена на две составляющие нормальную, направленную перпендикулярно к поверхности тела, и тангенциальную (касательную), направленную по касательной к этой поверхности. Соответственно различают два вида напряжений нормальные и тангенциальные, которым отвечают два основных вида деформации растяжение (или сжатие) и сдвиг. Остальные виды деформации можно представить с помощью различных комбинаций этих основных видов деформаций. Единицами напряжения являются в СИ Па (паскаль), в системе СГС — дин/см . [c.408] Соответствие характера деформации виду напряжения подтверждает первая аксиома реологии при всестороннем равномерном (изотропном) сжатии все материальные системы ведут себя одинаково — как идеальные упругие тела. Это означает, что в таких разных по структуре телах, как металл, смола, вода, кислород (газ), изотропное сжатие вызывает только упругую деформацию, а именно, уменьшаются размеры системы при сохранении ее формы и увеличивается плотность. При снятии нагрузки все параметры тела принимают первоначальные значения. Отсюда следует, что изотропное сжатие не позволяет выявить качественные различия в структуре тел. [c.408] Вместе с тем любая материальная система обладает всеми реологическими свойствами (вторая аксиома реологии). Основными из них, как уже упоминалось, являются упругость, пластичность, вязкость и прочность. Все эти свойства проявляются при сдвиговой деформации, которая поэтому считается наиболее важной в реологических исследованиях. [c.408] Таким образом, характер и величина деформации зависят от свойств материала те а, его формы и способа приложения внешних сил. [c.409] В реологии механические свойства материалов представляют в виде реологических моделей, в основе которых лежат три основных идеальных закона, связывающих напряжение с деформацией. Им соответствуют три элементарные модели (элемента) идеализированных материалов, отвечающих основным реологическим характеристикам (упругость, пластичность, вязкость) идеально упругое тело Гука, идеально вязкое тело Ньютона (ньютоновская жидкость) и идеально пластическое тело Сен-Венана — Кулона. [c.409] Эта зависимость показана на рис. VII.4, б. Из нее следует, что к элементу сухого трения (идеально пластическому телу) не может быть приложено напряжение, превышающее Рт. Величина Рт отражает прочность структуры тела. При условии Р = Рт структура идеального пластического тела разрушается, после чего сопротивление напряжению полностью отсутствует. [c.411] Сравнение идеальных элементов (реологических моделей) показывает, что энергия, затраченная на деформацию упругого тела Гука, возвращается при разгрузке (после прекращения действия напряжения), а при деформа- ции вязкого и пластического тел энер- Р гия превращается в теплоту. В соответствии с этим тело Гука принадлежит к консервативным системам, а другие два — к диссипативным (теряющим энергию). [c.411] Вернуться к основной статье