Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English
Мы уделили столь тщательное внимание подробному разбору этапов разработки специализированных алгоритмов оптимизации, чтобы обеспечить их связь и преемственность при переходе от имитационного моделирования к системам реального времени.

ПОИСК





Экономическая эффективность моделирования действующих произ водств

из "Моделирование промышленных процессов полимеризации"

Мы уделили столь тщательное внимание подробному разбору этапов разработки специализированных алгоритмов оптимизации, чтобы обеспечить их связь и преемственность при переходе от имитационного моделирования к системам реального времени. [c.209]
Аналогичная работа должна быть проведена для данного процесса при нескольких вариантах критериев, отличающихся типом целевой функции, сочетанием ограничений. Тогда для реального процесса оператор будет иметь возможность проиграт ь различные варианты управления, руководствуясь различными критериями, и в результате имитационного моделирования принять окончательное решение по управлению действующим производством. [c.209]
Это решение — всегда некоторый компромисс между различными вариантами оптимальных решений, причем чем больше проанализировано вариантов, тем больше гарантия, что не будет принято ошибочное решение. [c.210]
Необходимость анализа большого числа вариантов заставила нас обратиться к упрощенным моделям и алгоритмам ускоренной оптимизации. В связи с этим целесообразно подчеркнуть, что переход от общих моделей процесса полимеризации к упрощенным моделям должен быть произведен достаточно корректно, с определением области допустимого использования упрощенной модели и оценкой точности решений. Одним из вариантов получения упрощенных моделей может быть использование приемов построения эмпирических моделей, рассмотренных во второй главе, причем в качестве источника экспериментальных данных могут быть при этом взяты сами исходные общие (полные) модели. Упомянем и о другом способе получения упрощенных моделей использовании идеи активного эксперимента на исходной модели. Для этого просчитывают модель при различных состояниях входных воздействий, изменяемых в определенном диапазоне, используя полную матрицу планирования эксперимента или дробную реплику на объекте-модели с дальнейшей аппроксимацией полученных результатов полиномиальными уравнениями. Ценность такой формализации в том, что одновременно с вычислением коэффициентов модели определяют и оценки точности моделей в рассматриваемой области. [c.210]
Что касается алгоритмов оптимизации, то в системах имитационного моделирования наряду с алгоритмами оптимизации детерминированного (и общего, и специализированного) типа широко используют также приемы принятия решения в вероятностной постановке, например математический аппарат теории игр, хорошо зарекомендовавший себя при анализе сложных систем [109]. [c.210]
Для того чтобы результатами имитационного моделирования можно было воспользоваться, необходимо иметь гарантию того, что модель идентична объекту. Для этого, во-первых, модели должны быть гибкими , т. е. иметь 1-2 изменяемых параметра, с помощью которых можно обеспечить совпадения реальных и модельных значений и, во-вторых, в состав математического обеспечения должны входить программы для решения задачи оптимальной идентификации, часто называемой при этом адаптивной. Спектр используемых для этих целей алгоритмов довольно широк от обычных. алгоритмов поиска корней системы нелинейных уравнений до различных адаптивных алгоритмов стохастической аппроксимации [ПО] (разумеется, такие задачи приходится решать и в системах реального времени, и это вновь подтверждает их связь с имитационным моделированием). [c.210]
Здесь —вектор управлений У ) — функционал к — номер итерации. [c.211]
В методе сопряженных градиентов направление движения Р определяется с использованием всех ранее вычисленных векторов, причем Р сопряжено с Р°, Р. .., Р , что приводит к цели за конечное число шагов. [c.211]
Здесь Х(4), иЦ), 0[Х Т), ]—векторы размерностью т, з, г, I соответственно. Искомая управляющая функция иЦ) аппроксимируется кусочно-постоянной вектор-функцией с дискретностью N. Ограничения (У.77), (У.78) вводятся в минимизируемой функционал с помощью функции штрафа. [c.211]
В результате расчетов были получены значения параметров, соответствующие оптимальному режиму при различных значениях варьируемых начальных данных. [c.212]
Графически некоторые из этих результатов представлены на рис. 29—31. Оптимальные значения температуры в каждом из реакторов и на входе батареи при изменении параметров теплосъема Кт приведены на рис. 29,5. На рис. 29,а показано распределение концентраций по аппаратам. Зависимости относительных значений нагрузки и производительности от /Ст приведены на рис. 30. [c.212]
Характеристики для показателя качества в каждом реакторе рассчитывались по модели. Значение показателя качества полученного продукта Мб удовлетворяет заданному ограничению (65— 80 ед.). [c.212]
Результаты расчетов при изменении верхнего предела нагрузки приведены на рис. 31, а, б. При проверке оказалось, что для базовых значений /Ст = 60 ккал/(м2-ч °С) =69,8 Вт(М -К) и Т — = —15 °С во всех случаях оптимальным является наибольшее допустимое значение нагрузи 0 = 0 . [c.212]
Графики зависимости производительности в каждом реакторе от нагрузки показаны на рис. 32. Из графиков видно, что функция производительности для 1-го и 2-го реакторов имеет максимум. [c.212]
Исследование алгоритма при изменении ограничения на средневзвешенные температуры проводилось с целью определения влияния этого ограничения на показатель качества полученного продукта. Характеристики показателя в каждом из реакторов моделировались для трех значений верхней границы средневзвешенных температур Л1Г = 20 25 30. Прн уменьшении верхнего предела МТ значение показателя качества продукта на выходе батареи Мъ возрастает, и при Л1Т = 20 значение М выходит за верхний предел заданного ограничения. [c.214]
Это свидетельствует о том, что при незначительной модификации алгоритма можно обеспечить попадание Мп в любой, даже очень узкий диапазон [М , МГ], выбирая значение МГ автоматически по результатам сравнения истинного М с границами. [c.214]
Эффективность имитационного моделирования существенно зависит от времени определения оптимальных значений с помощью принятого в системе алгоритма оптимизации. [c.214]
Продолжительность решения зависит также от величин корректировочных приращений нагрузки и температуры. При уменьшении этих величин повышается точность определения оптимальных параметров, но время решения при этом значительно возрастает. [c.214]
Подробные результаты решения этих задач приведены в работах. [101, 116] здесь изложим только некоторые иллюстративные примеры. [c.214]
При оптимизации по быстродействию использовался описанный в главе IV алгоритм. Исходная динамическая модель реактора для полимеризации изопрена была подвергнута линеаризации в окрестности точки желаемых оптимальных режимов, полученных в результате решения задачи статической оптимизации по алгоритму эвристического типа. [c.214]


Вернуться к основной статье


© 2025 chem21.info Реклама на сайте