Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English
Для исследования и расчета процессов кристаллизации и изотермического испарения растворов на диаграмме растворимости может быть применен графический метод, известный под названием правила соединительной прямой и правила рычага.

ПОИСК





Правило соединительной прямой и правило рычага для двойных систем

из "Графические расчеты в технологии минеральных веществ Издание 2"

Для исследования и расчета процессов кристаллизации и изотермического испарения растворов на диаграмме растворимости может быть применен графический метод, известный под названием правила соединительной прямой и правила рычага. [c.79]
При расщеплении данной системы на два комплекса при определенной температуре можно отметить следующие закономерности. [c.79]
Так как твердую фазу и раствор, составляющие любую систему, можно рассматривать как ее части, то фигуративная точка системы и фигуративные точки ее жидкой и твердой фаз должны лежать на одной прямой. [c.80]
на рис, 19 фигуративная точка системы УНд и точки ее составных частей — раствора Л/з и твердой соли Р, — лежат на одной прямой. [c.80]
Для пояснения правила рычага приведем следующее рассуждение. Возьмем отрезок прямой УИЛ/ (рис. 21), называемый осью состава и отвечающий сумме компонентов х у = . Если длина отрезка прямой МК отвечает количеству компонента х, то длина отрезка КМ отвечает количеству компонента у. [c.80]
Предположим, что задано приготовить смесь, состоящую из весовых частей смеси Л] и 2 весовых частей смеси А . При их смешении получится а весовых единиц смеси Л. Положение точки А на оси состава можно найти, разделив отрезок Л1Л2 на части АуА и АА. , обратно пропорциональные количествам взятых смесей. Ось состава в этом случае можно рассматривать как рычаг, точка опоры которого — точка Л к концам рычага приложены силы а и Й2, отношение которых обратно пропорционально плечам АА и ЛЛ2. Поэтому это правило называется правилом рычага или правилом центра тяжести. [c.80]
Докажем правило рычага применительно к диаграмме растворимости двойной системы. [c.80]
Пусть дан раствор Ж, (рис. 22), содержащий т % соли. При охлаждении раствора от температуры до температуры 4 фигуративная точка системы переместится в положение УИо. з точки жидкой и твердой фаз расположатся на температурной горизонтали 4 в (жидкая фаза) и Ра (твердая фаза). Содержание соли в жидкой фазе составляет п %. [c.80]
Приведенное соотношение между относительным содержанием жидкой и твердой фаз может быть применено для графического расчета процесса кристаллишции солей при охлаждении растворов. [c.81]
При изотермическом испарении растворов соотношение количеств твердой и жидкой фаз определяется таким же образом. [c.81]
Как описано выше, при изотермическом испарении раствора М (рис. 23) фигуративная точка системы будет передвигаться вправо по температурной горизонтали Т°. Когда фигуративная точка М системы придет в пункт М , состав жидкой фазы будет изображаться точкой Му, а состав твердой фазы —точкой Р. [c.81]
Пользуясь правилом рычага, можно определить графически количество воды, испарившейся на той или иной стадии процесса. Например, определим количество испарившейся воды при изменении состава раствора от М до Му (рис. 23). [c.81]
Содержание соли в растворе М —, в растворе М —. [c.82]
Так как соль не выпадает в осадок, то количество ее в растворе до и после испарения будет одинаковым, т. е. [c.82]


Вернуться к основной статье


© 2025 chem21.info Реклама на сайте