ПОИСК Статьи Рисунки Таблицы Механизм действия из "Применение автомобильных бензинов" Наиболее эффективным и экономически выгодным способом повышения детонационной стойкости автомобильных бензинов является добавление к ним антидетонационных присадок — антидетонаторов. Антидетонаторами называют такие вещества, которые при добавлении к бензину в относительно небольших количествах значительно повышают его детонационную стойкость. Поиски способов устранения детонации в двигателях внутреннего сгорания при помощи присадок начались около 50 лет назад, и сразу же была обнаружена высокая эффективность тетраэтилсвинца (ТЭС). Однако весьма существенный недостаток ТЭС — его токсичность — заставлял все эти 50 лет продолжать поиски других антидетонаторов, менее токсичных, чем ТЭС. Было испытано несколько тысяч самых разнообразных соединений различных классов. Наиболее эффективными оказались металлоорганические соединения. [c.127] Антидетонационными свойствами обладают соединения свинца, олова, таллия, висмута, селена, теллура, марганца, железа, кобальта, никеля, меди, хрома и ряда других металлов. Как антидетонаторы были изучены алкилы металлов, карбонилы, вну-трикомплексные соли, соединения сэндвичевого строения [1, 2]. Эффективность соединений свинца и марганца будет рассмотрена ниже остановимся лишь на антидетонационных свойствах соединений других металлов. [c.127] Подробно исследованы и одно время практически использовались соединения железа. Высокими антидетонационными свойствами обладает пентакарбонил железа (ПКЖ)- ПКЖ представляет собой нерастворимую в воде жидкость бледно-желтого цвета с температурой кипения 102,5° С и температурой плавления — 21° С. На свету соединение разлагается с выделением твердого нерастворимого осадка Fe (С0)9, который при соприкосновении с воздухом самовоспламеняется. Эффективность ПКЖ как антидетонатора на 15—20% ниже, чем ТЭС. [c.127] Комплексное соединение пентакарбонила железа [Ре (00)5]3 X (С8Н1б)5 обладает более высокой стабильностью, чем ПКЖ, но примерно такой же эффективностью. Ферроцен (СаНа зРе — металлоорганическое соединение так называемого сэндвичевого строения. Это легко возгоняющийся кристаллический порошок с температурой плавления 174° С. Ферроцен обладает большей эффективностью, чем ДИБ—ПКЖ и ПКЖ, он повышает октановое число бензинов как с ТЭС, так и без ТЭС. На пути внедрения ферроцена стоит то же препятствие, что и для всех соединений железа — отсутствие эффективных выносителей для окиси железа. [c.128] Высокой детонационной стойкостью обладают некоторые внутри-комплексные соли меди. Их эффективность близка к эффективности железоорганических антидетонаторов. Однако эти соединения оказались нестабильными при хранении и в их присутствии наблюдалось ускоренное окисление углеводородов бензина. Кроме того, внутри комплексные соединения меди отлагаются на стенках впускного трубопровода и вызывают нарушения в процессе смесеобразования, поэтому практического применения они не получили. [c.128] Отмечены антидетонационные свойства таких соединений, как карбонил никеля, 2-этилгексоат кобальта, диэтилдиселенид, тетрабутил-олово, ацетилацетонаты кобальта и хрома, лаурат индия и др. [2—6]. [c.128] Все металлоорганические антидетонаторы добавляются к бензинам в очень малых количествах, не превышающих десятых и сотых долей процента. Но практическое применение находят и такие вещества, антидетонационный эффект которых проявляется в значительно больших концентрациях. Среди таких веществ на первом месте стоят ароматические амины — производные анилина. [c.128] В конце второй мировой войны, когда производство ТЭС не эбеспечивало возросших потребностей в нем, во многие авиационные бензины США и Англии вводили до 2% ксилидина. Монометиланилин широко применялся в 40—50-х гг. в ФРГ. В СССР одно время вырабатывалась и применялась смесь ароматических аминов с преобладанием монометиланилина под названием Экстралин (ГОСТ 3737—47). [c.129] При современном уровне производства ароматических аминов и ТЭС повышение октанового числа путем добавления ТЭС обходится значительно дешевле, чем такое же повышение вследствие введения ароматических аминов. [c.129] Весьма эффективным средством подавления детонации является впрыск воды во впускную систему двигателя. Однако вода — не антидетонатор. Попадая в камеры сгорания двигателя, она испаряется, и пар нагревается за счет тепла, выделившегося при сгорании смеси. Впрыск воды снижает температуру в камерах сгорания и охлаждает детали цилиндро-поршневой группы. Снижение температуры в камерах сгорания уменьшает скорость окислительных реакций, предшествующих детонации, и предотвращает возможность детонационного сгорания. Экспериментами показано, что впрыск воды снижает требования к антидетонационным свойствам бензинов на 7—10 октановых единиц. [c.129] Впрыск воды широко испытывался на отечественных автомобилях и применялся на тракторах, однако простой и надежной системы впрыска воды до сего времени не создано. Поиски антидетонационных присадок не носят стройного и систематического характера в связи с тем, что нет единого, достаточно обоснованного взгляда на механизм антидетонационного действия присадок. [c.129] Эти данные заставили отвести какую-то роль в антидетона-ционном эффекте и органической части присадок. Однако на первых порах исследований этой части приписывали лишь вспомогательную роль, поскольку эффективность соединений, образующих при разложении одинаковые органические радикалы и разные металлы, резко различалась. [c.129] Считалось, что органическая часть должна быть такой, чтобы соединение в целом распадалось в камере сгорания в нужный момент времени и отвечало всем другим требованиям, предъявляемым к присадкам. [c.130] Вспомогательная роль органической части антидетонатора находилась в соответствии и с первоначальными представлениями о механизме действия антидетонационных присадок в свете перекисной теории детонации. [c.130] При этом образуются малоактивные продукты окисления углеводородов и окись свинца. Окись свинца, взаимодействуя с кислородом воздуха, снова окисляется в двуокись свинца, способную реагировать с новой перекисной молекулой. Таким образом, один атом свинца, восстанавливаясь и окисляясь, способен разрушить большое количество перекисных молекул. Каждая разрушенная перекисная молекула, согласно цепной теорий, могла быть началом самостоятельной цепи образования новых перекисей. Этим объясняется высокая эффективность малых количеств антидетонаторов. [c.130] Наиболее полное объяснение антидетонационного действия присадок базируется на представлениях о детонации, как о многостадийном воспламенении части рабочей смеси. Работами А. С. Соколика и С. А. Янтовского [7] впервые была установлена принципиальная разница в действии ТЭС на задержку появления холодного пламени и задержку в развитии холоднопламенных процессов, ведущих к горячему взрыву. Показано, что введение ТЭС в углеводо-родо-воздушную смесь резко ослабляет интенсивность первичного холодного пламени (что фиксируется по свечению и приросту давления), удлиняет задержку вторичного пламени и, наконец, затрудняет последующий взрыв, делая его возможным лишь при более высоких давлениях [8]. [c.130] Воздействие металла антидетонатора на многостадийный процесс вероятнее всего сосредоточено не на первой, а на последующих стадиях, в которых наличие распыленного металла в объеме может дезактивировать активные частицы, образующиеся при взрывном распаде перекисей. Органические радикалы, появляющиеся при распаде металлоорганического антидетонатора в камере сгорания, облегчают распад перекисей, идущий по цепному механизму, снижают критическую концентрацию для взрывного распада, тем самым уменьшая интенсивность первичного холодного пламени. А это предопределяет торможение дальнейшего развития многостадийного воспламенения [8]. [c.131] Однако действие свободных радикалов нельзя сводить просто к общему торможению предпламенного процесса они затрудняют развитие именно низкотемпературного многостадийного процесса, в то же время облегчая развитие окислительных реакций, свойственных высокотемпературному одностадийному воспламенению [8]. Именно этим обстоятельством А. С. Соколик [8] объясняет снижение антидетонационного эффекта при увеличении содержания антидетонатора в топливе и даже обращение этого эффекта, когда при очень высоких концентрациях тетраэтилсвинца последний начинает действовать как продетонатор. В этом случае, вероятно, имеет место объемное одностадийное воспламенение благодаря резкому снижению энергии активации в результате ввода в газ большого количества активных начальных центров. [c.131] Таким образом, теория о многостадийном действии антидетонационных присадок отводит важную роль как металлу, так и органическому радикалу, что согласуется с большим эксперимента-льным материалом. [c.131] Вернуться к основной статье