ПОИСК Статьи Рисунки Таблицы Полимеризация циклов в твердой фазе из "Основы химии высокомолекулярных соединений" При характеристике устойчивости циклов следует различать термодинамическую и кинетическую устойчивость. [c.172] Термодинамическая устойчивость цикла характеризуется его термодинамическими функциями, кинетическая — подвижностью связей в условиях реакции. Поэтому термодинамически неустойчивые циклы могут быть кинетически устойчивыми. Так, напряженные цикланы термодинамически неустойчивы и принципиально могут полимеризоваться, однако они кинетически устойчивы, так как не содержат подвижной связи и полимеризуются с большим трудом. В отличие от термодинамической устойчивости цикла, являющейся его постоянной характеристикой для данной реакции, кинетическая устойчивость цикла может изменяться в зависимости от условий реакции. [c.172] Гетероциклические соединения в абсолютно чистом состоянии кинетически устойчивы, так как энергетические характеристики всех связей обычно близки и под действием тепловой энергии избирательный разрыв какой-нибудь одной связи мало вероятен. Так, например, абсолютно чистый и сухой е-капролактам при 2U0° в течение 200 ч практически не полимеризуется. Но гетероциклы полимеризуются в присутствии активаторов и катализаторов. [c.172] Активаторами процесса полимеризации циклов является вода и кислоты. Полимеризация циклов протекает также в присутствии катализаторов типа Фриделя —Крафтса (BF3, Fe b, Ti U), щелочных металлов, гидроокисей, солей, алкоголятов и др. [c.172] Кабанов В. А., Зубов В. П. Новые пути синтеза полимеров методами полимеризации. ЖВХО им. Д. И Менделеева, 1962, т. 7, с. 131 —140. [c.173] Быстрая полимеризация в твердой фазе протекает также при механическом диспергировании замороженного мономера в небольших количествах растворителя. [c.175] Структура полимеров, полученных полимеризацией в твердой фазе, может отличаться от структуры тех же полимеров, полученных в жидкой фазе. Так, при радиационной полимеризации акрилонитрила в твердой фазе образуется синдиотактический полимер, а полиакрилонитрил, полученный радиационной полимеризацией в жидкой фазе, содержит лишь небольшую долю синдиотактической структуры. [c.175] При радиационной полимеризации ацетилена в твердой фазе образуется полиацетилен с гранс-структурой, а в жидкой фазе с цыс-струк-турой (см. с. 413). При проведении полимеризации в твердой фазе структура полимера может зависеть от метода инициирования. Например, при полимеризации ацетальдегида в присутствии металлического натрия или магния методом молекулярных пучков образуется стереорегулярный полиацетальдегид, а радиационная полимеризация ацетальдегида в твердой фазе приводит к получению аморфного атактического полимера. Закономерности, определяющие образование полимеров с различной структурой при поляризации в твердой фазе, мало изучены. [c.175] Поскольку при гидролизе каждой молекулы циклического мономера возникают две концевые функциональные группы, общее число функциональных групп возрастает во времени и реакция имеет автокатали-тический характер. По мере приближения системы к равновесию скорость полимеризации уменьшается. [c.176] по-видимому, объясняется тем, что полимеризация связана с возникновением напряжений и дефектов в кристаллической решетке моь омера. Последнее, в свою очередь, обусловлено изменением межатомных расстояний при переходе от мономера к полимеру, так как полимеризация происходит в результате раскрытия внутримолекулярных связей мономера, например л-связи ненасыщенного соединения, и образования новых связей в макромолекуле полимера. Изменение межатомных расстояний при полимеризации неизбежно вызывает напряжения и дефекты в кристалле. Появившиеся дефекты затрудняют, а иногда и вовсе прекращают рост цепи. Для продолжения роста необходимо устранить дефекты кристалла, что может быть достигнуто некоторой перегруппировкой молекул, которая, по-видимому, требует высокой энергии активации и лимитирует скорость полимеризации. [c.177] Такое залечивание дефектов кристаллической решетки, очевидно, должно осуществляться легче на поверхности кристаллов или в местах трещин, поэтому медленная полимеризация, как это было показано экспериментально методом рентгеноскопии и прямым наблюдением в электронном и оптическом микроскопах, начинается именно в этих местах и развивается дальше главным образом на поверхности раздела кристалл — полимер. Скорость и глубина такой полимеризации будут зависеть, по-видимому, от числа к характера дефектов, которые были в кристаллической решетке мономера до полимеризации и возникли в процессе реакции, от соответствия межатомных расстояний в кристаллической решетке мономера и в макромолекуле полимера и от степени изменения межатомных расстояний при полимеризации. [c.177] Если процесс полимеризации протекает со значительным изменением межатомных расстояний, зарождение полимерной фазы и развитие реакции полимеризации очень затруднено. Но иногда начавшийся в нескольких точках процесс полимеризации создает благоприятные условия для протекания реакции на границе раздела полимер — кристалл. [c.177] В тех случаях, когда полимеризация сопровождается небольшим изменением межатомных расстояний, процесс может протекать внутри кристаллической решетки и образующиеся макромолекулы ориентируются вдоль определенной оси кристалла. Происходящие после этого даже небольшие перераспределения межатомных расстоянии могут приводить к образованию дефектов и напряжений в решетке, затрудняющих дальнейшую полимеризацию. [c.177] При температуре, близкой к температуре фазового перехода, молекулы мономера еще сохраняют упорядоченное расположение, но уже приобретают некоторую подвижность, и дефекты кристаллов, возникающие при полимеризации, быстро ликвидируются. Это обеспечивает беспрепятственный быстрый рост цепи в замороженном мономере. [c.177] Для получения таких однородных полимеров полимеризацию проводят при периодическом облучении системы ультрафиолетовыми лучами. Возникающие в момент облучения свободные радикалы при взаимодействии с мономером начинают реакционную цепь, рост которой продолжается и после прекращения облучения. Поскольку при эмульсионной полимеризации обрыв цепи путем рекомбинации растущих радикалов затруднен, для обрыва цепей требуются новые радикалы, которые возникают только при последующем облучении. В каждый период облучения происходит обрыв полимерных цепей, а также инициирование и начало роста новых цепей. В период прекращения облучения цепь растет, и продолжительностью этого периода определяется молекулярная масса полимера. Если систему облучать через строго определенные промежутки времени, то должен получиться полимер, монодисперсный по молекулярной массе. В действительности процесс протекает сложнее, так как полностью исключить реакции передачи цепи и обрыва цепи путем рекомбинации растущих радикалов трудно даже при очень низкой температуре (0°С). Поэтому получить полностью монодисперсный полимер пока не удается. Развитие этого очень интересного направления исследований может привести к созданию метода получения смеси ближайших полимергомологов. [c.179] Вернуться к основной статье