Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English
Все сказанное предопределяет и построение современного обш его курса биофизики, который подразделяется на две основные части первую — теоретическую биофизику, включаюш ую биофизику сложных систем (в свою очередь подразделяется на кинетику биологических процессов и термодинамику биологических процессов) и молекулярную биофизику (строение и электронные свойства полимеров) вторую — биофизику клеточных процессов, включаюшую биофизику мембранных процессов, биофизику фотобиологических процессов и радиационную биофизику. Вторая часть посвяш ена биофизике конкретных биологических процессов, проте-каюш их на разных структурных уровнях организации живого. Поскольку элементарной ячейкой живого является клетка, эту часть и целесообразно именовать биофизикой клеточных процессов.

ПОИСК





Биофизика сложных систем Кинетика биологических процессов

из "Биофизика Т.1"

Все сказанное предопределяет и построение современного обш его курса биофизики, который подразделяется на две основные части первую — теоретическую биофизику, включаюш ую биофизику сложных систем (в свою очередь подразделяется на кинетику биологических процессов и термодинамику биологических процессов) и молекулярную биофизику (строение и электронные свойства полимеров) вторую — биофизику клеточных процессов, включаюшую биофизику мембранных процессов, биофизику фотобиологических процессов и радиационную биофизику. Вторая часть посвяш ена биофизике конкретных биологических процессов, проте-каюш их на разных структурных уровнях организации живого. Поскольку элементарной ячейкой живого является клетка, эту часть и целесообразно именовать биофизикой клеточных процессов. [c.6]
В настоянием учебнике широко используются не только сведения из суш ествую-ш их университетских курсов по химии, физике, математике, физической химии для студентов-биологов, но и дается достаточно подробное изложение необходимого для понимания основ биофизики дополнительного материала, который не нашел своего отражения в соответствуюш их курсах. Рассмотрение этих вопросов основано на биологических примерах и приводится по ходу изложения основного материала учебника. [c.6]
На современном этапе развития биофизики произопши принципиальные сдвиги, связанные прежде всего с бурным развитием биофизики сложных систем и молекулярной биофизики. Именно в этих областях, занимающихся закономерностями динамического поведения биологических систем и механизмами молекулярных взаимодействий в биоструктурах, получены общие результаты, на основании которых в биофизике сформировалась собственная теоретическая база. Теоретические модели, разрабатываемые в таких разделах, как кинетика, термодинамика, теория регуляции биологических систем, строение биополимеров и их электронные и кон-формационные свойства, в биофизике составляют основу для анализа конкретных биологических процессов. [c.8]
Развитие и становление биофизики как пограничной науки, стоящей на стыке биологии, физики, химии и математики, проходило через ряд стадий. Уже на начальных этапах развития биофизика была тесно связана с идеями и методами физики, химии, физической химии и математики. Достаточно напомнить о применении физико-химической теории растворов электролитов, принципов химической кинетики, представлений коллоидной химии к анализу некоторых биологических процессов, что дало в начале XX в. ряд ценных результатов. С развитием биофизики в биологию проникли и точные экспериментальные методы исследований (спектральные, изотопные, дифракционные, радиоспектроскопические). [c.8]
Идеи и методы биофизики не только находят широкое применение при изучении биологических процессов на макромолекулярном и клеточном уровнях, но и распространяются, особенно в последние годы, на популяционный и экосистемный уровни организации живой природы. [c.9]
Важнейшее содержание биофизики составляют нахождение общих принципов биологически значимых взаимодействий на молекулярном уровне, раскрытие их природы в соответствии с законами современной физики, химии с использованием новейших достижений математики и разработка на основе этого исходных обобщенных понятий, адекватных описываемым биологическим явлениям. [c.9]
Важнейшей особенностью является то, что построение моделей в биофизике требует такой модификации идей смежных точных наук, которая равносильна выработке новых понятий в этих науках в применении к анализу биологических процессов. Биологические системы сами являются источником информации, которая стимулирует развитие некоторых областей физики, химии и математики. [c.9]
Применимость принципов химической кинетики к анализу метаболических процессов открывает широкие возможности математического моделирования с помо-ш ью обыкновенных дифференциальных уравнений. Па этом этапе было получено много важных результатов, в основном в области моделирования физиологобиохимических процессов, а также при моделировании динамики роста клеток и численности популяций в экологических системах. [c.10]
Однако если число переменных велико, а уравнения включают нелинейные члены, как это и имеет место в моделях биологических процессов, то поиски точных аналитических решений исходной системы дифференциальных уравнений встречают серьезные математические трудности. Ясно и то, что далеко не всегда сами по себе решения уравнений дают ответ на вопрос об обш их динамических свойствах и механизмах регуляции сложных систем. В этом отношении принципиальное значение в развитии математического моделирования сложных биологических процессов имел отказ от идеи обязательного нахождения точных аналитических решений соответствуюш их уравнений. Вместо этого на первый план выступают качественные методы анализа дифференциальных уравнений, которые позволяют раскрыть обш ие динамические особенности биологических систем. Сюда относятся прежде всего свойства стационарных состояний, их число, устойчивость, возможность переключения из одного режима в другой, наличие автоколебательных режимов. [c.10]
Па этой основе были развиты представления об иерархии времен и о минимальных и адекватных моделях, достаточно полно отражаюш их основные свойства объекта. Был также развит параметрический анализ динамического поведения систем. Па современном этапе в моделях учитываются изменения пространственной структуры биологической системы путем введения членов, отражаюш их явления переноса в активных средах. Па первый план сейчас выступает параметрический анализ базовых моделей, отражаюш их те или иные стороны самоорганизации биологических систем во времени и пространстве. Эти исследования требуют уже применения развитых и достаточно сложных математических методов. Кроме того, все большее значение приобретает использование вероятностных моделей в биологии, которые отражают влияние стохастических факторов на детерминистские процессы в биологических системах. Бифуркационная зависимость динамического поведения системы от критических значений параметров отражает возникновение в системе динамической информации, которая реализуется при смене режима функционирования. [c.10]
В этом отношении необходимо учитывать характер структурно-функциональной организации биосистем, в которых наиболее важные молекулярные превраш е-ния происходят в активных макромолекулярных комплексах. Именно на этом уровне структурной организации живого под влиянием внешних факторов (температура, рП, концентрации веш еств во внешней среде) могут таким образом измениться значения констант скоростей внутримолекулярных превраш ений, что это вызовет переход системы через бифуркационную точку со сменой режима устойчивости. [c.10]
В области молекулярной биофизики основу для понимания механизмов функционирования макромолекул составляют современные представления об электронно-конформационных взаимодействиях (ЭКВ) (М. В. Волькенштейн). Трансформация энергии и появление продуктов реакции в комплексах достигается в результате внутримолекулярных взаимодействий отдельных частей макромолекулы. Отсюда логически вытекают биофизические представления о своеобразии макромолекулы как физического объекта, сочетающего в себе взаимодействия по статистическим и механическим степеням свободы (Л. А. Блюменфельд, Д. С. Чернавский). [c.11]
В настоящее время интенсивно разрабатываются физические модели внутримолекулярной подвижности белка, где учитываются его особые свойства, отличающиеся от свойств твердого тела и жидкости. Так в модели ограниченной диффузии, показано, что связь функциональной активности и конформационной динамики белка определяется характером релаксационных процессов по внутримолекулярным и конформационным координатам с существенно разными скоростями. Задача состоит в том, чтобы найти принципы корреляции локальных и микроконформа-ционных изменений, приводящих в конечном итоге к детерминированным внутримолекулярным конформационным сдвигам, которые имеют вполне определенный функционально-биологический смысл. [c.11]
Ведущую роль здесь приобретают методы численного моделирования динамики белка, позволяющие представлять траектории движений отдельных атомов и молекулярных групп. [c.11]
Концепция ЭКВ успешно развивается и в современных моделях туннельного переноса электронов, тесно сопряженного с колебательными и конформационными степенями свободы. Перенос электрона между переносчиками в активном комплексе приводит к разным по своим масштабам структурным сдвигам в белковой части. С одной стороны, электронно-колебательные взаимодействия делают туннельный перенос электрона практически необратимым. В то же время ЭКВ способствует достижению активных контактных состояний переносчиков, где возможен эффективный транспорт электронов. [c.11]
Конечно, предстоит еще большая работа по разработке физических моделей внутримолекулярной динамики макромолекул. Однако уже сейчас ясно, что принцип ЭКВ позволяет с единых общенаучных позиций рассмотреть функционирование различных молекулярных машин, казалось бы, далеких друг от друга по своей биологической роли. Специфика и общность молекулярных механизмов фотобиологических процессов состоит в том, что первичный фотофизический акт использования энергии электронного возбуждения хромофора происходит при непосредственном участии его белкового окружения и ведет к созданию локального конформационно-напряженного состояния. Это состояние затем распространяется на всю макромолекулу, причем возникающие функционально значимые изменения есть результат конформационных превращений в белковой части фоточувствительного хромопротеина. [c.12]
Между первичными фотобиологическими превращениями в хромопротеине и внутримолекулярными превращениями в фермент-субстратных комплексах нет принципиальной разницы. Концепция внутримолекулярных ЭКВ привлекается сейчас и для объяснения молекулярных механизмов работы АТФ-синтетазы, а также переноса ионов через биологические мембраны. Это еще раз иллюстрирует плодотворность биофизического метода анализа и построения обобщенных моделей физических взаимодействий, которые лежат в основе явлений, разных в биологическом отношении, но родственных между собой по глубинным молекулярным механизмам. [c.12]
Изложенные выше соображения приводят к выводу, что построение и расположение разделов биофизической науки должны отражать связь между исходными теоретическими понятиями в биофизике и областью их применения в биологии. Это определяет единую логическую схему и в изложении основ биофизики. [c.14]


Вернуться к основной статье


© 2025 chem21.info Реклама на сайте