ПОИСК Статьи Рисунки Таблицы Люминесценция из "Физика и химия твердого состояния" Люминесценция (от лат. 1ит1п1з — свет) — послесвечение, представляющее собой избыток над тепловым излучением тела при данной температуре и имеющее длительность, значительно превышающую период световых волн (--10 с). Первая часть этого определения предложена Э. Видеманом (1888 г.), вторая часть — признак длительности (послесвечения) — введена С. И. Вавиловым (1945 г.) для того, чтобы отделить люминесценцию от других явлений вторичного свечения — отражения и рассеяния света, а также тормозного излучения Вавилова — Черенкова, индуцированного излучения и др [10]. Начальное возбуждение может быть вызвано облучением (излучением, частицами), деформацией (механическое или электрическое поле), а также химическим и биологическим воздействием. [c.431] По характеру зависимости от i и длительности люминесценцию условно делят на флуоресценцию (короткое свечение) и фосфоресценцию (длительное свечение). Ниже мы рассмотрим люминесценцию, которая возникает только за счет поглощаемой энергии света (фотолюминесценцию). [c.431] Продолжительность затухания фосфоресценции у различных люминофоров различна от малых долей секунды до многих часов. [c.431] По механизму элементарных процессов различают резонансную, спонтанную, вынужденную и рекомбинационную люминесценции (рис. 180). [c.432] Резонансная люминесценция наблюдается в атомных парах, у некоторых простых молекул и иногда в более сложных системах. [c.432] Излучение имеет самопроизвольный (спонтанный) характер и происходит с того же энергетического уровня, который достигается при поглощении энергии возбуждающего света (рис. 180, а). [c.432] Спонтанная люминесценция включает переход (излучательный, а чаще безызлучательный) на энергетический уровень, с которого происходит излучение (рис. 180, б). Этот вид люминесценции характерен для сложных молекул в парах и растворах и для примесных центров в твердых телах (см. гл. V). Особый случай представляет люминесценция, обусловленная переходами из экситонных состояний (см. рис. 175, а). [c.432] В примесных полупроводниках (и диэлектриках), как мы видели (см. рис. 101), в запрещенной зоне возникают локальные энергетические уровни (донорные, акцепторные и уровни прилипания , обусловленные дефектами структуры), в связи с чем вероятность рекомбинации (через локальные уровни) возрастает. Рекомбинацию через локальные уровни (центры рекомбинации) можно определить как переходы зона — локальный уровень — зона (рис. 180, г). [c.433] например, локализованный уровень активатора расположен немного выше валентной зоны и имеет большую вероятность захвата дырки, но вместе с тем и заметную вероятность захвата электронов зоны проводимости, то люминесцентное излучение возникает при рекомбинации свободного электрона зоны проводимости с захваченной этим уровнем дыркой (рис. 180, г, переход 2). [c.433] Если в запрещенной зоне, кроме основного уровня активатора, имеется уровень прилипания, то основной уровень имеет большую вероятность захвата дырки, а уровень прилипания — большую вероятность захвата электрона. После того как произошли оба захвата (переходы 3 и 4), происходит переход электрона с возбужденного уровня на основной, сопровождающийся излучением (переход 5). [c.433] Однако, как установили В. Овсянкин и П. Феофилов (1973 г.), вполне вероятен иной механизм образования антистоксовой люминесценции. Проведенные ими квантомеханические расчеты показали, что если два возбужденных атома окажутся рядом, то при взаимодействии один из них может полностью потерять свое возбуждение, а другой удвоит его. Последний, переходя в основное состояние, высветит квант вдвое крупнее поглощенных. Процесс этот назван авторами кооперативной люминесценцией. Они показали, что зеленое свечение ионов редкоземельного элемента эрбия в некоторых кристаллах, возбуждаемое инфракрасным светом ( ), вызвано кооперативной люминесценцией. Действительно, антистоксова люминесценция такого люминофора затухает примерно за 10 с после выключения возбуждающего света, а в их опыте послесвечение затягивалось до сотых долей секунды. [c.434] Совершилось, наконец, задуманное учеными инфракрасное излучение непосредственно преобразуется люминофорами в видимый свет. Это открывает новые перспективы современной техники инфракрасного видения. [c.434] Вернуться к основной статье