Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English
Для дрожжей характерно проявление двух альтернативных вариантов экспрессии определенной группы генов, которые определяют тип спаривания (а или а) индивидуальных клеток. Гаплоидные а-клетки способны узнавать и сливаться с гаплоидными а-клетками с образованием диплоидов (а/а). Диплоидные клетки могут расти в виде диплоидов или при голодании подвергаться мейозу с образованием гаплоидных спор с типами спаривания а или а. При мейозе маркеры а и а расщепляются как аллельные варианты по локусу типа спаривания, который картируется в хромосоме П1. Прорастание гаплоидной споры любого типа сопровождается делением клеток за счет почкования. После первого отпочкования клетка приобретает способность к переключению типа спаривания на противоположный как для себя самой, так и для следующей дочерней клетки в ходе второго деления. Таким образом, при каждом последующем делении происходит подобное переключение с частотой около 80%, что приводит к появлению диплоидного потомства гаплоидной споры (рис. 16.18).

ПОИСК





Контроль экспрессии генов, основанный на перестройках ДНК

из "Современная генетика Т.2"

Для дрожжей характерно проявление двух альтернативных вариантов экспрессии определенной группы генов, которые определяют тип спаривания (а или а) индивидуальных клеток. Гаплоидные а-клетки способны узнавать и сливаться с гаплоидными а-клетками с образованием диплоидов (а/а). Диплоидные клетки могут расти в виде диплоидов или при голодании подвергаться мейозу с образованием гаплоидных спор с типами спаривания а или а. При мейозе маркеры а и а расщепляются как аллельные варианты по локусу типа спаривания, который картируется в хромосоме П1. Прорастание гаплоидной споры любого типа сопровождается делением клеток за счет почкования. После первого отпочкования клетка приобретает способность к переключению типа спаривания на противоположный как для себя самой, так и для следующей дочерней клетки в ходе второго деления. Таким образом, при каждом последующем делении происходит подобное переключение с частотой около 80%, что приводит к появлению диплоидного потомства гаплоидной споры (рис. 16.18). [c.234]
Использование методов работы с рекомбинантными ДНК позволило довольно быстро подтвердить справедливость кассетной модели. В настоящее время известна структурная организация ДНК как в истинном локусе типа спаривания (МАТ), так и в области молчащих копий (НМLa. и HMRa). Все они расположены на хромосоме 1П (рис. 16.19). Хромосомы двух альтернативных типов спаривания различаются лишь небольшим негомологичным сегментом ДНК, обозначенным Y. Протяженность Ya-642 п.н., а протяженность Ya-747 п.н. Для обоих типов спаривания характерно наличие трех одинаковых участков последовательности -W, X и Z. В соответствующих молчащих копиях, содержащих последовательность Уа или Yo, также содержатся все или по крайней мере некоторые из этих общих участков последовательности (рис. 16.19). Процесс переключения представляет собой замену последовательностей Ya (или Уа), а также общих последовательностей, присутствующих в локусе МАТ, на соответствующие последовательности одного из молчащих локусов. [c.235]
Направленность переноса информации от НМЬили HMR к МАТ, но не в обратном направлении, возможно, также обусловлена меньшей компактностью структуры хроматина в области МАТ. Полагают, что ген НО кодирует эндонуклеазу, вносящую двуцепочечный разрыв между последовательностями Y и Z. Такой разрыв может возникать только в области МАТ и не возникает в идентичных последовательностях, локализованных в рамках HML и HMR. С образования двуцепочечного разрыва, вероятно, начинается собственно процесс переключения, в основе которого может находиться механизм, сходный с механизмом мейотической рекомбинации в рамках модели двуцепочечный разрыв-репарация (см. гл. 14). При деградации участка Y в области МАТ может возникать брешь, репарируемая за счет генной конверсии при участии последовательностей HML или HMR. [c.236]
Способность организма продуцировать такое колоссальное разнообразие специализированных белков (антител) порождает естественный вопрос каким образом эти белки кодируются в ДНК В последние десять лет благодаря развитию методов работы с рекомбинантными ДНК на этот вопрос удалось получить достаточно исчерпывающий ответ. Важнейшим фактором, определяющим разнообразие антител, является способность лимфоцитов к перегруппировке и комбинированию определенных сегментов ДНК с образованием тысяч различных возможных вариантов структуры соответствующих генов. [c.238]
О (не менее 10 представителей) и [4 гена]. Из них может быть составлено около 12000 комбинированных генов тяжелых цепей. Таким образом, при случайном попарном сочетании различных вариантов легких и тяжелых цепей можно получить 24-10 (12000 -2000) различных видов антител. Кроме того, С-концевая область Н-цепей кодируется различными генами Сд, которые соответствуют различным классам иммуноглобулинов, перечисленным в табл. 16.5 (рис. 16.21). [c.240]
Таким образом, возникает индивидуальная транскрипционная единица с промотором, примыкающим к гену Соответствующая мРНК полипептидной цепи образуется при сплайсинге гяРНК-транскрипта. [c.242]
На рис. 16.24 показана общая организация группы генов Н-цепи. Семейства генов Ju, D, и Vu расположены перед семейством генов Сд. Каждый из генов ц содержит собственную промоторную последовательность. Выбор экспрессии данного V-участка тяжелой цепи сопровождается двумя перегруппировками генов в ДНК объединением генов Уд и D с удалением промежуточной области ДНК и объединением VfjD и Jи, также с удалением промежуточной последовательности. Таким образом, возникает транскрипционная единица, с которой за счет альтернативного сплайсинга могут считываться ц- и 5-варианты тяжелой цепи данного типа. В сочетании с продуктами экспрессии образовавшихся транскрипционных единиц типа L,, или экспрессия генов и Я5 обеспечивает продукцию IgM и IgD. В дальнейшем на стадии терминальной дифференцировке В-лимфоцитов происходит так называемое переключение классов, которое настраивает клетку на продукцию того или иного из перечисленных в табл. 16.5 класса иммуноглобулинов. Это переключение сопряжено с третьей перестройкой ДНК, в ходе которой экспрессируемая область VaDJu объединяется с определенным Сн-участком, при этом удаляется промежуточная область ДНК. Каким образом в В-лимфоцитах происходит регуляция таких сложных перестроек ДНК, пока неизвестно. [c.244]
Выявление множества разнообразных процессов, вовлеченных в регуляцию экспрессии эукариотических генов, свидетельствует о том, что эта регуляция осуществляется на целом ряде различных уровней. Как видно из приведенных в настоящей главе примеров, многое уже известно о регуляторных центрах в ДНК. Эти знания основаны на структурной информации, полученной с применением рекомбинантных ДНК. В то же время многие аспекты регуляции генов у эукариот остаются неясными. Относительно мало известно о регуляторных молекулах, которые должны взаимодействовать с регуляторными центрами ДНК, а также об эффекторах, оказывающих модуляторное действие на функционирование регуляторных молекул в отношении экспрессии тех или иных генов. Ясно, что многие важнейшие детали регуляции экспрессии эукариотических генов на молекулярном уровне подлежат дальнейшему изучению. [c.244]
Приведите данные, которые согласуются с этой гипотезой или противоречат ей. [c.246]
Высшие эукариоты-это многоклеточные организмы, у которых различные группы клеток приспособлены для выполнения разных функций. Развитие организма начинается с зиготы, содержащей одно диплоидное ядро. Затем зигота делится митотически, образуя множество клеток малого размера, содержащих дочерние ядра. Клетки, возникающие в результате этих ранних делений дробления, в ходе дальнейшего развития зародыша дают начало различным специализированным типам клеток, в каждом из которых происходит экспрессия определенного набора генов. [c.248]


Вернуться к основной статье


© 2025 chem21.info Реклама на сайте