ПОИСК Статьи Рисунки Таблицы Почвенная коррозия из "Повышение коррозионной стойкости нефтегазопромыслового оборудования" Основная причина почвенной коррозии — наличие воды. Даже при минимальной влажности почва становится ионным проводником электрического тока, т.е. представляет собой электролит. К почвенной коррозии применимы основные закономерности электрохимической коррозии, справедливые для жидких электролитов. Однако электрохимический характер почвенной коррозии имеет особенности, отличающие ее от коррозии при погружении металла в электролит или от коррозии под пленкой влаги. Это связано с тем, что почва имеет сложное строение и представляет собой гетерогенную капиллярно-пористую систему. Почвы обладают водопроницаемостью и капиллярным водоперемещением, они накапливают и удерживают тепло и вместе с тем снижают испаряемость влаги. Если вода находится в порах или в виде поверхностных пленок на стенках пор, то ее связь с почвой имеет физико-механический характер. При этом влага удерживается в почве в неопределенных соотношениях. Другой вид связи — физико-химическая, при которой возникают коллоидные образования почвы. Возможна также химическая связь, которая характеризуется строго определенным молекулярным соотношением компонентов, например при образовании гидратированных химических соединений. [c.41] К важным особешюстям почвенной коррозии относится возникновение не только микрокоррозионных пар, связанных с неоднородностью структуры металла, но также имеющих большое значение макрокорро-зионных пар, образование которых связано со структурной неоднородностью почвы и с неравномерной аэрацией отдельных участков конструкции в почве. Почвенная коррозия обусловлена одновременным протеканием макро- и микрокоррозионных процессов, соотношение между скоростями которых зависит от протяженности заложенной в почву конструкции. Возникновение почвенной коррозии вследствие функционирования преимущественно микроэлектрохимических пар наблюдается на объектах малой протяженности, таких, как основания вышек и мачт, днища резервуаров, газгольдеров и т.п. Почва, соприкасающаяся с этими поверхностями, считается достаточно однородной, и коррозия протекает в основном за счет работы микрокоррозионных пар. Однако возможно и возникновение макрокоррозионных пар вследствие неравномерной аэрации на краях конструкции, на разных глубинах заложения конструкции и др. [c.41] Интенсивность коррозионного процесса в почве зависит от взаимосвязанных факторов влажности почвы, минерализации грунтовых вод, воздухопроницаемости, удельного злектрического сопротивления, био-генности, структуры и гранулометрического состава грунтов и почв. [c.42] Влажность почвы. Под влажностью почвы принято понимать отношение количества воды, находящейся в единице объема, к массе сухого твердого вещества в этом же объеме. Наличие воды в почве — главная причина возникновения коррозионного процесса, поэтому на интенсивность развития коррозионного процесса оказьшает большое влияние влажность почвы. Известно, что в сухих почвах коррозия незначительна. При влажности почвы до 10 % скорость коррозии сравнительно невелика, но от 10 % и выше наблюдается заметное увеличение скорости коррозии, которая достигает максимума при определенной критической влажности. Критическая влажность зависит от засоленности и влагоем-кости почвы, т.е. от типа, структуры и гранулометрического состава. При большой влажности, выше критической, скорость коррозии уменьшается вследствие затрудненности доступа кислорода. Различное влияние степени увлажненности почвы на ее коррозионную активность связано с тем, что при малой влажности велико омическое сопротивление почвы, что тормозит анодные и катодные процессы. Доступ кислорода в почве отличается от такового при погружении металла в раствор или под пленкой влаги, и в зависимости от структуры и степени увлажненности почвы он может меняться на несколько порядков, т.е. в десятки тысяч раз. [c.42] Влажность почвы в значительной степени зависит не только от количества выпадающих осадков, но также от способности данной почвы удерживать влагу. Эта способность больше у глинистых и меньше у песчаных почв. Почвы, расположенные ниже уровня грунтовых вод, всегда насыщены водой. Выше уровня грунтовых вод почва смачивается вследствие капиллярного подъема воды в порах почвы. В глинах, отличающихся тонким капиллярным строением, высота подъема воды достигает 1150-1200 мм, а в крупнозернистых почвах 20-100 мм. Для определения степени влажности почв служит шкала Ф.П. Саваренского [И]. [c.42] Влажность почвы разная в зависимости от географической широты, климатических условий, времени года, а также от температурных перепадов по глубине почвы. На уровне с меньшим тепловым потенциалом конденсируются водяные пары, которые превращаются в капельно-жид-кую влагу. Если стенки оборудования имеют более низкую температуру, чем температура грунта, то будет происходить конденсация водяных паров и почва у поверхности сооружения приобретет повышенную влажность. [c.42] Минерализация грунтовых вод. Общая минерализация грунтовых вод может изменяться в широких пределах от 10 мг/л до 349 г/л [И]. При минерализа1щи до 1 г/л солей (до ОД %) грунтовые воды относятся к пресным, минерализация от 1 до 10 г/л (от 0,1 до 1 %) характеризует солоноватые, от 10 до 50 г/л — соленые воды, а при содержании солей от 50 до 400 г/л (от 5 до 40 %) воды относятся к рассолам. В почвенной воде растворены газы - СО2, О2. Наибольшую растворимость, превышающую растворимость кислорода, при прочих равных условиях имеет углекислый газ. [c.43] Влияние pH. С увеличением содержания углекислого газа в воздухе повышается содержание углекислоты в растворе почвенной воды, что приводит к растворению карбоната кальция и образованию бикарбоната кальция, который понижает кислотность. В почвах, лишенных СаСОз рН не может быть больше 7. Минимальная агрессивность почв по отношению к стали наблюдается при pH = 10—14. С понижением pH почвы ниже 6, особенно при значительной общей кислотности почвы (гумусовые и болотистые почвы), ее коррозионная активность будет возрастать, так как прн этих условиях с заметной скоростью может происходить процесс водородной деполяризации. [c.43] Влияние воздухопроницаемости, структуры и гранулометрического состава. Воздухопроницаемость почвы имеет большое значение для почвенной коррозии, так как коррозия протекает с кислородной деполяризацией. Состав почвенного воздуха отличается от состава атмосферного воздуха. [c.43] Более высокое содержание углекислоты и низкое содержание кислорода в почвенном воздухе по сравнению с атмосферным обусловлены протекающими в почве биохимическими процессами. Кислород расходуется главным образом на процесс разложения органических остатков и потребляется корневыми системами растений. Весной и в начале лета на глубине, неодинаковой в разных почвах, наблюдается невысокое содержание кислорода. Зависимость воздухопроницаемости почвы и грунта от гранулометрического состава, влажности и изменения кислорода по глубине слоя является причиной образования пар дифференциальной аэрации. Анодом пары становится та часть подземного сооружения, к которой приток кислорода затруднен, а участки, омываемые достаточным количеством кислорода, служат катодами. Уменьшение аэрации в определенной степени характеризуется уменьшением электросопротивления. [c.44] Почвенная коррозия протекает по одинаковому механизму с электрохимической коррозией металлов в растворе и в атмосфере, однако доступ кислорода различен в растворе он определяется условиями перемешивания, в атмосфере толщиной пленки влаги, а в почве воздухопроницаемостью (рис. 14) почвы. [c.44] Для почвенной коррозии протяженных конструкций трубопроводов вследствие чередования грунтов с различной кислородной проницаемостью повышается роль омического фактора, и коррозия протекает с катодноюмическим контролем. [c.45] Удельное электрическое сопротивление оказьшает большое влияние на коррозионную агрессивность почвы, которая тем больше, чем меньше ее удельное сопротивление. Однако ввиду того, что удельное сопротивление зависит от влажности, состава и концентрации солей, воздухопроницаемости почвы и др., по его значению нельзя однозначно оценить коррозионную активность почвы. Интенсивность почвенной коррозии -результат воздействия многочисленных взаимосвязанных и переменных во времени факторов, и изменение одного из них оказывает влияние на суммарное воздействие факторов. В СССР коррозионную активность почв по отношению к стали оценивают по трем показателям удельному сопротивлению, потере массы образцов и плотности поляризующего тока. Коррозионную активность грунтов устанавливают по показателю, характеризующему наибольшую коррозионную активность (табл. 9). [c.45] Биогенность. Наиболее характерные случаи ускорения коррозии железа под влиянием жизнедеятельности бактерий наблюдаются в анаэробных условиях, т.е. при отсутствии кислорода. Образование кислорода, необходимого для протекания катодного процесса при коррозии в нейтральных средах, в анаэробных условиях, происходит за счет жизнедеятельности сульфатредуцирующих бактерий, восстанавливающих содержащиеся в почве соли серной кислоты по реакции ЗО - - 8 + а ион серы участвует во вторичной реакции образования продуктов коррозии железа по реакции Ре 8 - Ре8. Это подтверждается результатами химического анализа продуктов анаэробной коррозии стали, в которых присутствует наряду с гидратами закиси и окиси железа также больщое количество сернистого железа. [c.46] Ввиду того что железо входит в протоплазму бактерий, преимущественное развитие колоний этих видов бактерий происходит непосредственно-на стальной поверхности, электрохимическая коррозия которой является источником их жизнедеятельности. Скопления микробных масс, плотно прилегающих к металлической поверхности, создают анаэробные условия под этой массой, вследствие чего возникает концентрационный электрохимический элемент между этим участком, лшиенным кислорода, и соседними, более аэрируемыми участками. [c.46] Сильно загрязненные воды и грунты содержат от 10 до 10 сульфатвосстанавливающих бактерий в миллилитре. При наличии бакхерий в количестве 10 вода считается неагрессивной. [c.46] Анаэробные бактерии ускоряют коррозионный процесс главным образом при нахождении всей металлической конструкции в анаэробных условиях. Если только часть конструкции находится в анаэробных условиях, а другая имеет достаточную аэрацию, то главная причина коррозии - возникновение макропары, в которой анаэробный участок служит анодом и подвергается местной коррозии. [c.46] Коррозионное поведение различных металлов в почве. Наиболее распространенный металлический материал для подземных конструкций — это низколегированная сталь и чугун. В табл. 10 приведены скорости коррозии железа в почвах различной агрессивности и сравнительные данные по скорости коррозии в других природных средах. [c.47] Средняя ориентировочная скорость коррозии незащищенных конструкций небольшой протяженности иэ низколегированной стали составляет 0,2—0,4 мм/год. На протяженных объектах, например трубопроводах, в связи с воздействием макропар дифференциальной аэрации и особенно блуждающих токов скорость коррозии значительно выше. У серого чугуна скорость коррозии в 1,5—2 раза выше, чем у стали. Однако эта разница не имеет существенного значения, так как вследствие более толстых стенок чугунных труб и затухающего характера почвенной коррозии чугунные трубы работают часто дольше стальных. [c.47] Вернуться к основной статье