ПОИСК Статьи Рисунки Таблицы Устойчивость растений к низким температуСолеустойчивость из "Физиология растений" Важнейший и очень характерный для растений механизм защиты от последствий действия экстремальных факторов — процесс замены поврежденных или утраченных органов путем регенерации и роста пазушных почек. Во всех этих процессах коррелятивного роста участвуют межклеточные системы регуляции (гормональная, трофическая и электрофизиологическая). [c.418] При неблагоприятных условиях существования в растениях резко возрастает выработка этилена и АБК, снижающих обмен веществ, тормозящих ростовые процессы, способствующих старению и опадению органов, переходу растительного организма в состояние покоя. Одновременно в тканях снижается содержание ауксина, цитокинина и гиббереллинов. Эта стереотипная реакция гормональной системы на экстремальные условия очень характерна для растительных организмов. Здесь наблюдается явное соответствие теории стресса, предложенной Селье для животных, с той только разницей, что у растений в условиях стресса ведущую роль играют фитогормоны, тормозящие их функциональную активность. [c.418] Стресс на популяционном уровне. В условиях длительного и сильного стресса в период истощения гибнут те индивидуумы, у которых генетически норма реакции на данный экстремальный фактор ограничена узкими пределами. Эти растения устраняются из популяции, а семенное потомство образуют лишь генетически более устойчивые растения. В результате общий уровень устойчивости в популяции возрастает. Таким образом, на популяционном уровне в стрессовую реакцию включается дополнительный фактор — отбор, приводящий к появлению более приспособленных организмов и новых видов (генетическая адаптация). Предпосылкой к этому механизму служит внутрипопуляционная вариабельность уровня устойчивости к тому или иному фактору или группе факторов. [c.418] Засуха возникает как результат достаточно длительного отсутствия дождей, сопровождается высокой температурой воздуха и солнечной инсоляцией. Чаще она начинается с атмосферной засухи, характеризующейся низкой относительной влажностью воздуха. При длительном отсутствии дождей к атмосферной засухе добавляется почвенная засуха в связи с уменьшением (исчезновением) доступной для растений воды в почве. Во время суховея (атмосферная засуха, сопровождаемая сильным ветром) почвенная засуха может не возникать. В условиях засухи растения испытывают значительный водный дефицит. [c.419] Влияние недостатка воды на растение. Недостаток воды в тканях растений создается, когда расход воды при транспирации превышает ее поступление. Водный дефицит может возникнуть в жаркую солнечную погоду к середине дня, при этом увеличивается сосущая сила листьев, что активирует поступление воды из почвы. Растения регулируют уровень водного дефицита, меняя отверстость устьиц. Обычно при завядании листьев водный дефицит их восстанавливается в вечерние и ночные часы (временное завядание). Глубокое завядание наблюдается при отсутствии в почве доступной для растения воды. Это завядание чаще всего приводит растения к гибели. [c.419] Развитие признаков повреждения в клетках листьев традесканции по мере увеличения температуры при пятиминутном нагревании (по В. Я. Александрову, 1964). [c.420] При обезвоживании у растений, не приспособленных к засухе, значительно усиливается интенсивность дыхания (возможно, из-за большого количества субстратов дыхания — сахаров), а затем постепенно снижается. У засухоустойчивых растений в этих условиях существенных изменений дыхания не наблюдается или отмечается небольшое усиление. [c.420] В условиях водного дефицита быстро тормозятся клеточное деление и особенно растяжение, что приводит к формированию мелких клеток. Вследствие этого задерживается рост самого растения, особенно листьев и стеблей. Рост корней в начале засухи даже ускоряется и снижается лишь при длительном недостатке воды в почве. Корни реагируют на засуху рядом защитных приспособлений опробковением, суберинизацией экзодермы, ускорением дифференцировки клеток, выходящих из меристемы, и др. [c.420] Таким образом, недостаток влаги вызывает значительные и постепенно усиливающиеся изменения большинства физиологических процессов у растений. [c.420] Процесс фотосинтеза более чувствителен к действию высоких температур, чем дыхание (см. рис. 4.14 и 14.2). Гидролиз полимеров, в частности белков, ускоряющийся при водном дефиците, значительно активируется при высокотемпературном стрессе. Распад белков идет с образованием аммиака, который может оказывать отравляющее действие на клетки у неустойчивых к перегреву растений. У жаростойких растений наблюдается увеличение содержания органических кислот, связывающих избыточный аммиак. Еще одним способом защиты от перегрева может служить усиленная транспирация, обеспечиваемая мощной корневой системой. В других случаях (суккуленты) жаростойкость определяется высокой вязкостью цитоплазмы и повышенным содержанием прочно связанной воды. При действии высоких температур в клетках растений индуцируется синтез стрессовых белков (белков теплового шока). [c.421] Приспособление растений к засухе. Как уже отмечалось, неблагоприятное действие засухи состоит в том, что растения испытывают недостаток воды или комплексное влияние обезвоживания и перегрева. У растений засушливых местообитаний — ксерофитов — выработались приспособления, позволяющие переносить периоды засухи. [c.421] Растения используют три основных способа защиты 1) предотвращение излишней потери воды клетками (избегание высыхания), 2) перенесение высыхания, 3) избегание периода засухи. Наиболее общими являются приспособления для сохранения воды в клетках. [c.421] Изучая физиологическую природу засухоустойчивости ксерофитов, Н. А. Максимов (1953) показал, что эти растения не являются сухолюбивыми обилие воды в почве способствует их интенсивному росту. Устойчивость к засухе заключается в их способности переносить потерю воды. [c.422] Интересным приспособлением, уменьшающим потерю воды через устьица, обладают суккуленты. Благодаря особенностям процесса фотосинтеза (САМ-метаболизм, см, 3.4.3) в дневные часы в условиях высокой температуры и сухости воздуха пустыни их устьица закрыты, поскольку СО2 фиксируется ночью. [c.423] Детоксикация избытка образующегося при протеолизе аммиака осуществляется с участием органических кислот, количество которых возрастает в тканях при водном дефиците и высокой температуре. Процессы восстановления после прекращения действия засухи идут успешно, если сохранены от повреждения при недостатке воды и перегреве генетические системы клеток. Защита ДНК от действия засухи состоит в частичном выведении молекулы из активного состояния с помощью ядерных белков и, возможно, как в случае теплового стресса, с участием специальных стрессовых белков. Поэтому изменения количества ДНК обнаруживаются лишь при сильной длительной засухе. [c.423] Отмеченные выще изменения содержания фитогормонов-ингибиторов наблюдаются у растений-мезофитов при засухе. У пойкилоксерофитов, переходящих при наступлении засухи в состояние анабиоза, прекращение роста не связано с накоплением ингибиторов роста. [c.424] Снижение содержания гормонов-активаторов роста, в частности ИУК, происходит, по-видимому, вслед за остановкой роста. Например, в листьях подсолнечника, в верхущках стеблей и колосках пщеницы и других растений рост начинает подавляться уже при влажности почвы, составляющей 60% от полевой влагоемкости, а количество ауксинов заметно снижается в условиях почвенной засухи при влажности почвы около 30% от полевой влагоемкости, Уменьщение ауксина в тканях при засухе может быть связано с низким содержанием его предшественника — триптофана, а также с подавлением транспорта ауксинов по растению. Обработка растений в условиях засухи растворами ауксина, цитокинина, гиббереллина усугубляет отрицательное действие засухи. Однако опрыскивание растений цитокинином в период восстановления после засухи значительно улучшает состояние растений. Кроме того, цитокинин увеличивает жаростойкость растений (в частности улучшает всхожесть семян). Как предполагает О. Н. Кулаева (1973), это защитное действие цитокининов может быть связано с их влиянием на структурное и функциональное состояние макромолекулярных компонентов клетку, в частности на мембранные системы. [c.424] Вернуться к основной статье