ПОИСК Статьи Рисунки Таблицы Чем гены антител отличаются от других генов перестройки ДНК вариабельной области из "Что если Ламарк не прав Иммуногенетика и эволюция" Принцип ДНК делает РНК делает Белок , уже описанный в гл. 2, применим для всех организмов от простых бактерий до сложных позвоночных, включая человека. Однако существует одно важное отличие структуры генов высших клеток, включая клетки позвоночных, и соответствующих генов бактерий. Кодирующие последовательности эукариотических генов (экзо-ны) перемежаются с некодирующими участками ДНК (нитронами). [c.102] У бактерий участок, кодирующий белок, представлен непрерывной рядом триплетных кодонов, каждый из которых определяет одну аминокислоту (см. приложение). мРНК транскрибируется и немедленно транслируется в аминокислотную последовательность (белок) в рибосомах. [c.104] Это теоретически привлекательное, хотя и достаточно смелое предсказание перестройки ДНК, было доказано лишь десять лет спустя Сусуми Тонегава, который описал организацию и перестройку генов Ig-локуса у мыши[3]. Оказалось, что перестройка ДНК много сложнее, чем предполагалось. Этот процесс изображен на рис. 4.5 он имеет место и у мыши, и у человека. У других позвоночных может быть несколько иная, но в принципе сходная организация кодирующих элементов Ig-локуса. [c.106] О генах антител в неперестроенном виде говорят, что они имеют конфигурацию зародышевой линии . В таком виде находится ДНК в половых клетках (сперматозоидах и яйцеклетках) и во всех клетках организма, кроме зрелых лимфоцитов (в клетках печени, почек, поджелудочной железы, в других лимфоцитах, например, в фагоцитах). В каждом созревающем лимфоците мыши и человека ДНК подвергается случайной соматической перестройке. Один из V-элементов перемещается и соединяется с одним D- и одним J-элементом. Этот участок располагается перед первым С-геном. Кодирующий С-участок разделен рядом интронов. После этого все еще остается длинная промежуточная последовательность между перестроенным V-геном, который теперь называется V(D)J-reH, и С-участком. Эту структуру называют соматической конфигурацией . Скобки вокруг D в общем символе гена появляются, потому что гены легких цепей Ig построены только из V- и J-элементов. [c.107] Продемонстрированные Тонегавой У(В)1-перестройки (случайное использование примерно 100 У-генов, 20 О-генов и 41-генов и случайное объединение тяжелых и легких цепей для образования гетеродимерного связывающего центра) дают возможность продуцировать большое потенциальное разнообразие белков из сравнительно небольшого количества генетического материала. Кроме того, иногда слияние V, В, и I приводит к добавлению или потере оснований, увеличивая, таким образом, разнообразие. [c.109] Второй вопрос, почему мутации ограничиваются V(D)J-y4a-стком, чрезвычайно важен для обсуждения обратной связи между сомой и зародышевой линией, которая составляет главную тему этой книги. Мы подробно расскажем об этом в следующей главе. Здесь подчеркнем лишь некоторые общие принципы. Если мутации в вариабельной области антитела могут оказаться полезными, то мутации в константной области, скорее всего, вредны, так как они могут нарушить эффекторные функции антитела, запуск лизиса бактериальных клеток или стимулирование фагоцитоза (рис. 3.1). Разделение V- и С-участков позволило эволюции создать механизм, который обеспечивает мутации в V-участке, но сохраняет С-участок неизменным. Вот что происходит в В-лимфоците на определенных стадиях его жизни. Перестроенный V(D)J-reH может подвергаться очень высокому уровню соматических мутаций, и новое антитело оценивается по способности связывать антиген (см. следующую главу). Антитела с самой высокой аффинностью к чужеродному антигену выигрывают в отборочных соревнованиях за связывание антигена, сохраняются и становятся долго живущими клетками памяти. В-лимфоцит проиграет соревнование, если мутация уменьшает или уничтожает аффинность такие клетки погибают. В-лимфоциты, кодирующие антитела, которые связывают собственные антигены, также уничтожаются, и, следовательно, сохраняется аутотолерантность. [c.110] В этих вычислениях не учитывается дополнительное разнообразие, возникающее в результате добавлений или потерь оснований в процессе слияния У(В)1. [c.111] Однако эти оценки размера репертуара антител все еше велики. Основа стратегии иммунной системы как мыши, так и человека — это случайные перестройки V-, D- и J-генов. Полностью функциональные белки антител закодированы в зародышевой линии как отдельные участки ДНК, ожидающие соматической перестройки и сборки в функциональный V(D)J-reH (рис. 4.5). Затем случайная комбинация Н- и L-белковых цепочек образует HL-гетеродимер — антитело. Такая стратегия хранения генетической информации чрезвычайно экономна и позволяет зашифровать миллионы потенциально полезных вариантов. [c.112] Мы подробно обсуждаем детали строения локусов Ig в конфигурации зародышевой линии и соматической конфигурации, поскольку это позволит интерпретировать их в рамках предположения о существовании ламарковского процесса обратной связи сомы и зародышевой линии. В следующих главах мы сравним эти конфигурации и увидим, что различия между ними высвечивают генетическую уникальность иммунной системы и позволяют назвать умными гены, кодирующие антитела и ТкР. Уникальные свойства Ig-генов и молекулярных продуктов этих генов, созданные в ходе эволюции позвоночных, дают возможность по-новому взглянуть на роль некоторых генетических процессов, протекающих в иммунной системе. К этим процессам относятся сплайсинг V(D)J-инфopмaциoннoй РНК, обратная транскрипция и предполагаемый перенос ДНК от сомы в зародышевую линию. [c.113] Вернуться к основной статье