Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English
Нематики. Начнем описание устройства жидких кристаллов на примере наиболее простой и хорошо изученной их разновидности, нематических жидких кристаллов, или, как еще принято говорить, нематиков.

ПОИСК





Нематики

из "Жидкие кристаллы"

Нематики. Начнем описание устройства жидких кристаллов на примере наиболее простой и хорошо изученной их разновидности, нематических жидких кристаллов, или, как еще принято говорить, нематиков. [c.16]
При понижении температуры все превращения происходят в обратном порядке и точно при тех же температурах, т. е. последовательность фаз тзкоез прозрачный расплав—смутный расплав— -кристалл или в принятых сокращениях ИЖ- НЖК- ТК. [c.17]
Для того чтобо разобраться, как устроена жидкокристаллическая фаза и чем она отличается от обычной жидкости или, как мы иногда будем дальше говорить, от изотропной жидкости нужно обратить внимание на форму молекул соединения, образуюш,его жидкокристаллическую фазу. [c.18]
Чтобы схематично представить себе устройство нематика, удобно образующие его молекулы представить в виде палочек. Для такой идеализации есть физические основания. Молекулы, образующие жидкие кристаллы, как уже говорилось, представляют собой типичные для многих органических веществ образования со сравнительно большим молекулярным весом, протяженности которых в одном направлении в 2—3 разе больше, чем в поперечном. Структура молекулы типичного нематика приведена на рис. 3. Можно считать, что направление введенных нами палочек совпадает с длинными осями молекул. При введенной нами идеализации структуру нематика следует представлять как жидкость одинаково ориентированных палочек . Это означает, что центры тяжести палочек расположены и движутся хаотически, как в жидкости, а ориентация при этом остается у всех палочек одинаковой и неизменной (см. рис. 4). [c.18]
На самом деле, конечно, молекулы нематика подвержены не только случайному поступательному движению, но и ориентация их осей испытывает отклонения от направления, определяющего ориентацию палочек в рассматриваемой нами жидкости. Поэтому направления палочек задают преимущественную, усредненную ориентацию, и реально молекулы совершают хаотические ориентационные колебания вокруг этого направления усредненной ориентации. Амплитуда соответствующих ориентационных колебаний молекул зависит от близости жидкого кристалла к точке фазового перехода в обычную жидкость ГМ, возрастая по мере приближения температуры нематика к температуре фазового перехода. В точке фазового перехода ориентационное упорядочение молекул полностью исчезает и ориентационные движения молекул так же, как и трансляционные, оказываются полностью хаотическими. [c.19]
В нематической же фазе значение параметра порядка 5 0, минимально непосредственно при температуре перехода Тл из изотропной жидкости в нематическую фазу и возрастает по мере понижения температуры ниже Г// В целом же при изменении температуры происходит смена следующих фазовых состояний. При температуре ниже точки перехода нематика в обыкновенный кристалл или, как ее называют, температуре плавления Тт — кристаллическое состояние. В интервале температур от до Гуу—нематический жидкий кристалл. Выше 7 ,л — обычная жидкость. [c.20]
Если же не приняты специальные предосторожности, то жидкокристаллический образец представляет собой совокупность хаотическим образом ориентированных малых однодоменных областей. Именно с такими образцами, как правило, имели дело первые исследователи жидких кристаллов, и мутный расплав, возникавший после первого плавления МББА, о котором говорилось выше, и был образцом такого вида. На границах раздела различным образом ориентированных однодоменных областей в таких образцах происходит, как говорят, нарушение оптической однородности или, что то же самое, скачок значения показателя преломления. Это непосредственно следует из сказанного выше о двупреломлении однодоменного нематического образца и просто соответствует тому, что для света, пересекающего границу раздела двух областей с различной ориентацией директора, показатели преломления этих областей различны, т. е. показатель преломления испытывает скачок, А как хорошо известно, на границе раздела двух областей с различными показателями преломления свет испытывает отражение. С таким отражением каждый знаком на примере оконных стекол. Так же, как и в случае с оконным стеклом, на одной границе раздела (одном скачке оптической однородности) отражение света в нематике может быть невелико, но если таких границ много (в образце много неупорядоченных однодоменных областей), такие нерегулярные нарушения оптической однородности приводят к сильному рассеянию света. Вот почему нематики, если не принять специальных мер, сильно рассеивают свет. После первого плавления при температуре возникает мутный расплав. [c.21]
Наблюдениям этих нитей первыми исследователями нематик и обязан своему названию. Нема (vтl xa) — это по гречески нить. Отсюда и название — нематический жидкий кристалл или нематик. Здесь же надо сказать, что реально наблюдения описанной картины нематика в связи с малостью размеров областей с одинаковой ориентацией директора осуществляются с помощью поляризационного микроскопа. [c.22]
Упругость жидкого кристалла. Выше в основном говорилось о наблюдениях, связанных с проявлением необычных оптических свойств жидких кристаллов. Первым исследователям бросались в глаза, естественно, свойства, наиболее доступные наблюдению. А такими свойствами как раз и были оптические свойства. Техника оптического эксперимента уже в девятнадцатом веке достигла высокого уровня, а, например, микроскоп, даже поляризационный, т. е. позволявший освещать объект исследования поляризованным светом и анализировать поляризацию прошедшего света, был вполне доступным прибором для многих лабораторий. [c.22]
Оптические наблюдения дали значительное количество фактов о свойствах жидкокристаллической фазы, которые необходимо было понять и описать. Одним из первых достижений в описании свойств жидких кристаллов, как уже упоминалось во введении, было создание теории упругости жидких кристаллов. В современной форме она была в основном сформулирована английским учены м Ф. Франком в пятидесятые годы. [c.22]
Для кристаллов существует хорошо развитая теория упругости. Еще в школе учат тому, что деформация твердого тела прямо пропорциональна приложенной силе и обратно пропорциональна модулю упругости К. Возникает мысль, если оптические свойства жидких кристаллов подобны свойствам обычных кристаллов, то, может быть, жидкий кристалл, подобно обычному кристаллу, обладает и упругими свойствами. Может показаться на первый взгляд, что эта мысль совсем уж тривиальна. Однако не торопитесь с суждениями. Вспомните, что жидкий кристалл течет, как обычная жидкость. А жидкость не проявляет свойств упругости, за исключением упругости по отношению к всестороннему сжатию, и поэтому для нее модуль упругости по отношению к обычным деформациям строго равен нулю. Казалось бы, налицо парадокс. Но его разрешение в том, что жидкий кристалл — это не обычная, а анизотропная жидкость, т. е. жидкость, свойства которой различны в различных направлениях. [c.23]
Оказывается, любую деформацию в жидком кристалле можно представить как одну из трех допустимых в ЖК видов изгибных деформаций либо как комбинацию дтих трех видов деформации. Такими главными деформациями являются поперечный изгиб, кручение и продольный изгиб. Рис. 6, иллюстрирующий названные видыде формаций, делает понятным происхождение их названий. [c.24]
Коэффициенты пропорциональности между упругой энергией жидкого кристалла и деформациями изгибов называют упругими модулями. Таких упругих модулей в жидких кристаллах по числу деформаций три — К1, Кг и Кз. Численные значения этих модулей несколько отличаются друг от друга. Так, модуль продольного изгиба Кз обычно оказывается больше двух других модулей. Наименьшую упругость жидкий кристалл проявляет по отношению к кручению, т. е. модуль Кг, как правило, меньше остальных. [c.25]
Такой результат качественно можно понять, вспоминая обсуждавшуюся выше модель нематика как жидкости ориентированных палочек. Действительно, чтобы осуществить продольный изгиб, надо прикладывать усилия, которые стремятся изогнуть эти палочки (а они жесткие ). В деформации же кручения, например, происходит просто поворот палочек-молекул относительно друг друга, при этом не возникает усилий, связанных с деформацией отдельной палочки-молекулы. [c.25]
Континуальная теория применима для описания и других типов жидких кристаллов. Для них, однако, требуются определенные модификации теории. Но об этом речь пойдет дальше. [c.26]
Гидродинамика ЖК. Только что мы познакомились с упругими свойствами жидкого кpи тa lлa, сближающими его с твердыми телами. При этом обнаружились существенные отличия его упругих свойств от свойств кристалла как в качественном, так и количественном отношении. Теперь познакомимся детально со свойством жидкого кристалла, типичным для жидкости, — текучестью, изучением которой занимается наука гидродинамика. [c.26]
Сразу следует сказать, что несмотря на солидный возраст гидродинамики, одной из древнейших научных дисциплин, и большие достижения, в этой науке существуют проблемы, не решенные до сих пор. К их числу относится проблема турбулентного, т. е. сопровождающегося нерегулярными вихрями, как в бурном потоке, течения жидкости. Эта проблема, находящаяся, кстати сказать, сейчас в центре внимания специалистов, не решена еще для самых обычных жидкостей, таких, как вода. А о полном описании турбулентного течения таких сложных сред, как жидкие кристаллы, пока что не идет и речи. Поэтому, говоря здесь о текучести жидких кристаллов, мы будем иметь в виду их спокойное течение, в котором нет нерегулярных вихрей, или, как принято называть его, ламинарное течение . [c.26]
Вязкость характеризуется количественно коэффициентом вязкости Т1, который показывает, как сильно трение между соседними слоями текущей жидкости и насколько интенсивно передается движение жидкости от одной ее точки к другой (см. рис. 7). Именно из-за вязкости при течении жидкости по трубе ее скорость непосредственно на стенках трубы равна нулю, а в сечении трубы не постоянна, а возрастает по мере удаления от стенок, достигая максимума в центре. [c.27]
Обратим здесь внимание читателя на то, что в девятнадцатом веке и ранее было часто принято многим установленным учеными соотношениям, даже не очень важным, давать громкое имя закон . В результате этой традиции появились приведенные выше термины — закон Пуазейля, закон Стокса и многие другие законы. Это не должно смущать читателя и вводить его в заблуждение при оценке значимости названных соотношений по сравнению со знакомыми ему со школьной скамьи фундаментальными законами, например, законами механики Ньютона или законами электромагнетизма Фарадея. Конечно, значимость соотношений, найденных Пуазей-лем и Стоксом, несравнима со значимостью фундаментальных законов Природы, а установившаяся здесь терминология— это просто дань времени. По современной практике вместо слова закон следовало бы употребить термин формула , т. е. формула Пуазейля, формула Стокса. [c.28]
Названные закономерности, как будем их называть, после сделанного отступления прекрасно зарекомендовали себя при определении вязкости жидкостей. В частности, экспериментально была подтверждена их справедливость и показано, что значение коэффициента вязкости не зависит от скорости течения жидкости (скорости шарика), пока выполняются условия ламинарного течения. [c.28]


Вернуться к основной статье


© 2025 chem21.info Реклама на сайте