Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English
Довольно широкое распространение получил метод определения скорости коррозии металла котлов в стендовых условиях по поляризационному сопротивлению. Принципы, теоретические основы и практическое осуществление метода были подробно рассмотрены в 4.1. Так же как и в стояночных и эксплуатационных режимах, в стендовых условиях коррозионный контроль металла котлов может осуществляться приборами типа Антикор , позволяющими определять поляризационное сопротивление, пересчитывать его значение на показатель скорости коррозии, определять кинетику коррозионного процесса и т. д.

ПОИСК





Методы контроля коррозии металла котлов в эксплуатационных условиях

из "Контроль коррозии металла котлов"

Довольно широкое распространение получил метод определения скорости коррозии металла котлов в стендовых условиях по поляризационному сопротивлению. Принципы, теоретические основы и практическое осуществление метода были подробно рассмотрены в 4.1. Так же как и в стояночных и эксплуатационных режимах, в стендовых условиях коррозионный контроль металла котлов может осуществляться приборами типа Антикор , позволяющими определять поляризационное сопротивление, пересчитывать его значение на показатель скорости коррозии, определять кинетику коррозионного процесса и т. д. [c.143]
Эффективным методом исследования коррозии металла котлов, в частности локальных коррозионных повреждений, является изучение кривых анодного заряжения поверхности. Для их получения электрод заряжается анодно током постоянной плотности. По характеру изменения потенциала во времени можно однозначно определить, подвергается ли металл локальной коррозии или нет. Метод анодного заряжения дает возможность по кривым потенциал -время определять минимальное положительное значение потенциала, при котором начинается активирование поверхности, и выявлять некоторые специфические особенности локальной коррозии. Подробнее об этом методе см. в 6.1. [c.143]
Метод измерения тока, возникающего между двумя электродами, применяют для моделирования коррозионных элементов при изучения контактных пар, щелевой коррозии, влияния аэрации и т. д. [c.143]
В момент измерения тока контактная пара замыкается на амперметр с определенным сопротивлением, в остальное же время она остается короткозамкнутой или в цепь включают сопротивление, равное сопротивлению измерительного прибора. [c.144]
При изменении малых токов, например когда исследуют работу коррозионного элемента, образованного металлом устья и вершиной щели или трещины, необходимы очень чувствительные приборы, которые имеют большое внутреннее сопротивление. Чтобы измерить коррозионные токи между этими участками поверхности металла, замыкают подобные электроды, а в цепь включают чувствительный потенциометр с малым сопротивлением. Для этой же цели можно использовать так называемую схему с нулевым сопротивлением (рис. 44). В этой же схеме падение напряжения в исследуемой гальванической паре от сопротивления прибора и дополнительного сопротивления компенсируется равным по величине, но противоположным по знаку напряжением от внешнего источника тока. Таким образом, в измерительной цепи не происходит потери напряжения от исследуемой пары (сопротивление схемы как бы равно нулю). Контроль за регулировкой схемы ведут по гальванометру. [c.144]
Разделение котодного и анодного пространств при измерении силы тока контактной пары с помощью электрического ключ приводит к созданию условий, чаще всего отсутствующих на практике, поэтому падение напряжения на ключе также необходимо компенсировать по принципу схемы с нулевым сопротивлением, иначе результаты будут занижены. Уменьшить сопротивление между электродами можно, разделяя их электрохимическим мостиком, не имеющим шлифов. Концы такого мостика заполняются агар-агаром. [c.145]
Силу тока контактных пар можно измерять в движущейся жидкости или в любых других условиях, воспроизводящих эксплуатационные. [c.145]
Как правило, в основе коррозионных испытаний металла котлов в стендовых условиях при повышенных температурах и давлениях также лежат электрохимические методы. Однако подобного род коррозионные испытания имеют ряд отличий от описанных в 5.1. [c.145]
Коррозионные измерения в различных средах при повышенных температурах и атмосферном давлении практикуются достаточно широко, но с точки зрения исследования коррозии металла котлов в условиях, приближенных к эксплуатационным, такие измерения не позволяют получить полную картину коррозионной стойкости материалов. Гораздо эффективнее и информативнее электрохимические исследования, проводимые в автоклавах. [c.145]
Автоклавы для проведения статических коррозионных испытаний в воде и паре при высоких температурах и давлениях изготовляются, как правило, из аустенитной нержавеющей стали 1Х18Н9Т. [c.145]
В автоклаве следует предусматривать чехол для термопары и штуцера, предназначенного для крепления импульсной трубки манометра, и кранов точной регулировки. Подпитку автоклава тем или иным газом из баллонов удобнее всего осуществлять с помощью сильфонных вентилей. Краны точной регулировки используются для насыщения среды в автоклаве различными газами и для отбора проб раствора и газа. [c.146]
Для определения концентрации кислорода в охлажденный автоклав через один из клапанов подается чистый аргон (0,005 % кислорода) под давлением 0,5 мПа. Раствор вытесняется из автоклава через другой вентиль в стеклянную ампулу, предварительно промытую чистым аргоном, содержащим менее 0,005 % кислорода. Кроме того, ампула один или два раза промывается исследуемым раствором, затем в нее отбирается проба. [c.146]
Содержание кислорода в растворе целесообразно определять индиго-карминовым методом с точностью до 0,025 мг/л, а хлориды -нефелометрическим методом с точностью до 0,06 мг/л. Минимальный объем пробы на кислород 25 мл. [c.146]
При отборе проб в нагретом автоклаве раствор с помощью клапана дросселируется в охлажденную герметизированную емкость после конденсации пара. [c.146]
Работающий автоклав пополняется новыми порциями раствора, которые подаются в него из дополнительной емкости через один из кранов точной регулировки. [c.146]
В этой емкости создается путем нагрева раствора давление, превышающее давление в автоклаве. Для измерения уровня жидкости в автоклаве к нему подобно водомерному стеклу приваривается трубка из нержавеющей стали, вдоль которой располагаются спаи термопар. [c.146]
Температура стенки трубки в зоне раствора отличается от температуры трубки в зоне пара. В связи с этим уровень жидкости в автоклаве можно определить с точностью до 3-5 мм. Автоклавы вместимостью до 1,5 л нагреваются от комнатной температуры до 500 С за 3-4 ч, охлаждаются за 6-7 ч. [c.146]
На рис. 47 представлен автоклав для электрохимических измерений при высоких температурах. Пропитанная водой деревянная пробка 4 обеспечивает электрохимический контакт и герметичность. Вода в электролитическом ключе изолирована от автоклава непроводящим материалом (трубка 6, ниппель 5, наконечник 7 изготовлены из фторопласта-4). Так как фторопласт-4 не рекомендуется применять при температурах выше 200 °С, кожух электролитического ключа охлаждается проточной водой. Поляризующий ток подается на образцы 9 через электровводы 3, изолированные слюдой 10 ох крышки 2. Существенным недостатком этой конструкции автоклава является то, что при испытаниях в дистиллированной воде катодные и анодные поляризационные кривые являются надежными на участках, где плотность тока не превышает 70 мкА/см . [c.148]
В других конструкциях автоклавов осуществляется разделение катодного и анодного пространств. Это приводит к тому, что значительная доля омического падения потенциала между электродами приходится на электрический ключ, благодаря чему градиент одического падения потенциала в объеме, где помещен испытуемый образец, оказывается незначительным даже при больших плотностях тока и практически не влияет на результаты измерений. Что касается термрдиффузионного потенциала, возникающего из-за градиента температур в электролитическом ключе, то установлено, что на границе одинаковых растворов, имеющих разные температуры, его величина составляет 10 В/°С и ошибкой, вносимой за этот счет в измерения по предлагаемой методике, можно пренебречь. [c.149]
Деаэрация воды в автоклаве осуществляется путем барботажа раствора чистым аргоном в течение 30 мин через краны точной регулировки. Обескислороживание воды можно осуществлять также путем кипячения раствора в автоклаве при температуре 105-110 °С с одновременным стравливанием некоторого количества пара. [c.150]


Вернуться к основной статье


© 2025 chem21.info Реклама на сайте