ПОИСК Статьи Рисунки Таблицы Методы окисления — восстановления (редоксиметрия) из "Количественный анализ" В редоксиметрии используются реакции окисления — восстановления, связанные с переходом электронов от одного иона (молекулы) к другому. Вещество, теряющее электроны, в этих реакциях является восстановителем, а приобретающее — окислителем первое вещество окисляется, а второе — восстанавливается. Следствием такого перераспределения электроно в является изменение степени окисления соответствующих атомов, молекул или ионов, причем степень окисления восстанавливающихся веществ понижается, а окисляющихся — повышается. Например, превращения Ре + в Ре +, С1 в С12, Си в Си + представляют собой окисление, поскольку степень окисления возрастает (Ре + и С1 теряют по одному электрону, а Сц2+ отдает 2 электрона). [c.343] Наконец, существует еще одна важная аналогия между кислотами и основаниями — с одной стороны, и окислителями и восста-иовителями —с другой. Так, в случае кислотно-основных реакций для того, чтобы какое-нибудь соединение проявляло кислотное свойство, необходимо присутствие в растворе основания, обладающего большим сродством к протону, чем основание, образуемое из кислоты, отдающей протон. Подобным же образом и в окислительно-восстановительных реакциях электроны не могут существовать растворе в свободном состоянии, для того чтобы какой-нибудь восстановитель проявлял свои свойства, необходимо присутствие окислителя, имеющего ббльщее сродство к электронам, чем окислитель,— продукт окисления данного восстановителя. Следовательно, точно так же, как в кислотно-основных системах, следует говорить не об отдельном окислителе или восстановителе, а об окислительно-вос-становительных системах, компонентами в которых являются окисленная и восстановленная формы одного и того же соединения. [c.344] Для ТОГО чтобы В -приведенных схемах реакция протекала слева направо, необходимо, чтобы Bo i был более сильным восстановителем, чем образованная из Ок2 его сопряженная форма Bo j., и А] была бы более сильной кислотой, чем получаемая вследствие реакции кислота Аг, являющаяся сопряженной формой основания Вг. Согласно всему сказанному Oki/Bo i, Окг/Восг, Ai/Bi, А2/В2 являются соответственно окислительно-восстановительными и кислотно-основными системами. Отсюда в соответствии с приведенными ранее примерами следует говорить об окислительно-восстановительных системах, или парах Fe V Fe +, I2/ I-, u +/ u и т. д. [c.344] ИЗ раствора способна разряжаться и выделяться на металле (процесс восстановления). Как только скорости этих двух противоположно направленных электрохимических реакций становятся равными, устанавливается динамическое равновесие, при котором в единицу времени столько ионов покидает металл, сколько разряжается на нем. В зависимости от того, какой процесс преобладает, на металле возникает избыток положительных или отрицательных зарядов, а раствор вблизи поверхности металла получает противоположный заряд. Следствием этого является возникновение разности потенциалов на поверхности раздела металл — раствор. [c.345] При экспериментальном определении окислительных потенциалов различных пар приходится учитывать, что величина их зависит не только от силы входящих в состав данной пары окислителя и восстановителя, но и от отношения их концентрации (точнее, активностей). Для получения сравнимых результатов необходимо сделать концентрации одинаковыми, в общем случае равными единице. Получающиеся при этом окислительные потенциалы называются стандартными (нормальными) окислительно-восстановительными потенциалами и обозначаются через °. [c.345] Более точно стандартным называется тот потенциал, который данная окислительно-восстановиТельная система имеет при активности, равной единице всех компонентов, участвующих в окислительно-восстановительном процессе на электроде. В этом случае 1п ([Ок]/[Вос]) = О и = 0. [c.345] В дальнейшем для краткости принят термн стандартный потенциал . [c.345] Потенциал стандартного водородного электрода условно принят равным нулю. [c.346] При определении стандартного потенциала какой-либо данной пары, например Fe VFe2+, ее комбинируют со стандартным водородным электродом в гальванический элемент, как показано на рис. 56. [c.346] В сосуд 2 помещают смесь равных объемов растворов РеС1з и Fe la одинаковых молярных концентраций и погружают в нее платиновый электрод. Оба электрода соединяют проводником, включив в цепь прибор 5 для измерения э. д. с. (потенциометр). Растворы соединяют U-образной трубкой 3 с раствором электролита (КС1). По трубке 3, называемой электролитическим ключом , ионы диффундируют из одного сосуда в другой (при этом замыкается внутренняя цепь) . [c.346] Знак плюс показывает, что данная пара играет при комбинировании ее со стандартным водородным электродом роль положительного полюса. Наоборот, если она является отрицательным полюсом (т. е. при работе элемента отдает электроны Н+-ионам восстанавливая их до На), то потенциал ее считается отрицательным. Полученная для пары Ре +/Ре2+ величина стандартного потенциала (+0,77 в) является мерой способности Ге +-ионов отнимать электроны от молекул На, т. е. окислять их до ионов Н+. [c.347] Неличина стандартного потенциала пары С12/2С1 оказывается значительно большей, чем пары Ре +/Ре +, она равна сь/гс - = - +1,36 в. Следовательно, сродство к электронам (т. е. окислительная активность) у С1г значительно больше, чем у Ре +. Соответственно С1 является более слабым восстановителем, чем Fe Таки м образом, чем больиле стандартный потенциал данной пары, тем ()олее сильным окислителем является ее окисленная форма и тем более слабым восстановителем — восстановленная форма. [c.347] Величины стандартных потенциалов различных пар, имеющих значение в количественном анализе, приведены в табл. 20. В первой й третьей графах этой таблицы даны формулы отдельных компонентов различных пар, эти компоненты расположены в порядке уменьшения соответствующих им стандартных потенциалов (четвертая графа). Во второй графе указано число электронов (м), получаемых окислителем (первая графа) при превращении его соответствующий восстановитель (третья графа). [c.347] В КИСЛОЙ среде (Я =-1-1,ЗЗв), СЬ( =+ 1,36в), Вг2( = + 1,08) Fe3+(i 0=+0,77 в), АзО ( = +0,56 я), 12( = +0,54 в). [c.349] слабее действуют Г, АзО , и т. д. Ионы р- практически совсем не обладают восстановительными свойствами, так как нет такого окислителя, который мог бы отнять у них электроны. Отнять электроны у Р -ионов можно только путем электролиза. [c.349] Приведенное правило можно формулировать также следующим образом окислители, принадлежащие к окислительно-восстанови-тельным системам с большими стандартными потенциалами, способны окислять любые восстановители, являющиеся компонентами окислительно-восстановительных систем с меньшими стандартными потенциалами . [c.350] Рассматриваемое правило дает возможность, пользуясь таблицей стандартных потенциалов, предвидеть направление течения различных окислительно-восстановительных реакций, выбирать подходящие окислители и восстановители и решать ряд других важных для аналитической практики вопросов. [c.350] При этом, если некоторые из компонентов представляют собой твердую фазу, газообразное вещество, насыщающее раствор при постоянном давлении в одну атмосферу, либо молекулы вещества, концентрация которого настолько велика, что ее можно считать постоянной (например, молекулы растворителя), то они lit фигурируют под знаком логарифма, так как их активности, будучи постоян-ними, входят в величину как это будет показано в приведенных дальше примерах. [c.352] Очевидно, величина Е° (равная —0,76 в) представляет собой тот потенциал, который пара Zn +ZZn имеет при Zn + = 1 г-ион1л, так как только при этом условии ]g[Zn +] = О и Е = Е°. [c.352] Из уравнений видно, что концентрация Н+ особенно сильно влияет здесь на величину окислительно-восстановительного потенциала раствора, а следовательно, и па его окислительно-восстановительную активность. [c.353] Вернуться к основной статье