Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Плутоний химические свойства

    Химия плутония. Химические свойства плутония были весьма широко изучены рядом исследователей в США и Канаде. Необходимость такого исследования в связи с работами по атомной энергии (Манхеттенский проект) привела к тому, что химические свойства плутония теперь известны лучше, чем свойства многих обычных элементов. [c.182]

    Известно, что соосаждение было использовано как основной метод для изучения химических свойств нептуния и плутония [см. Г. С и б о р г. Успехи химии, 15. 420 (1946)]. [c.58]

    Выход плутония был в 100 раз выше, чем по прежней методике, теперь можно было изучить его химические свойства. [c.226]


    Разделение урана, нептуния и плутония основано на различии их химических свойств и значительно легче осуществляется, чем разделение изотопов урана. Поэтому роль плутония в ядерной технике неуклонно возрастает. Металлический плутоний, как уран и нептуний, получают путем восстановления РиР., или РиР барием, кальцием или литием при высокой температуре. [c.443]

    Характер взаимодействия плутония с другими элементами в значительной степени определяется его структурой и физико-химическими свойствами, которые существенно отличаются от структуры и свойств обычных металлов. В настоящее время благодаря исследованиям в основном советских ученых изучено значительное число двойных и тройных систем плутония со многими металлами периодической системы [25—27, 33, 115—117, 435, 620. 621]. [c.26]

    Почему не добывают плутоний из урановых руд Мала, слишком мала концентрация. В грамм добыча —в год труды — это о радии, а плутония в рудах содержится в 400 тыс. раз меньше, чем радия. Поэтому не только добыть — даже обнаружить земной плутоний необыкновенно трудно. Сделать это удалось только после того, как были изучены физические и химические свойства плутония, полученного в атомных реакторах. , [c.397]

    Разделение близких по химическим свойствам актиноидов — урана, нептуния и плутония — может быть основано на разнице в свойствах их четырех- и шестивалентных соединений. [c.400]

    Другой путь, описанный в литературе, заключается в переработке урана в плутоний с последующим делением плутония. Хотя по химическим свойствам плутоний оказался близким к урану, но все же их разделение значительно легче, чем разделение изотопов урана. Впрочем, процесс получения плутония тоже представляет большие трудности. [c.424]

    Существование летучего фторида плутония было предсказано на основании сравнения известных химических свойств плутония и урана. Тем не менее исследователям, наблюдавшим гек- [c.176]

    Плутоний представляет собой уже не изотоп урана, а самостоятельный элемент с другими по сравнению с ураном химическими свойствами. Поэтому его можно отделять от непрореагировавшего урана методом химической переработки. [c.387]

    По химическим свойствам нептуний во многом сходен с ураном и плутонием. В образовании его химических связей участвуют 5Д и 7 электроны. В растворах солей нептуний образует ионы Кр +, Кр +, ЫрО а также КрО +и КрО 5 . [c.623]

    ХИМИЧЕСКИЕ СВОЙСТВА ПЛУТОНИЯ [c.384]

    Металлический америций — более электроположительный и, следовательно, более активный металл, чем нептуний и плутоний. Он очень реакционноспособен, но сведений о его химических свойствах мало. Потенциал перехода америция из элементарного состояния в Ат + составляет 2,32 в, что близко к аналогичным переходам редкоземельных элементов. [c.398]

    Методы удаления радиоактивных отходов зависят от. природы отходов, от типа и уровня радиоактивности, а также от их химических свойств. Например, почти все высокоактивные отходы, постоянно образующиеся в больщих количествах, поступают с экстракционного процесса регенерации урана и плутония. Эти отходы могут быть в виде концентрированных кислых или щелочных растворов солей. В табл. 12.1 показаны основные компоненты типичных отходов производственных процессов. [c.305]

    Методы отделения нептуния, плутония и америция от урана основаны на перечисленных ниже химических свойствах  [c.544]

    Химические свойства урана, нептуния, плутония и америция очень близки, а их твердые соединения обычно изоморфны. Основные различия проявляются в устойчивости степеней окисления в растворе. [c.546]

    Наиболее полно изучены окислительно-восстановительные свойства ионов плутония. Химическое поведение плутония сейчас известно лучше, чем поведение многих элементов периодической системы. Повышенный интерес к плутонию связан, с одной стороны, с его значением как ядерного горючего, с другой — с чрезвычайно сложными и многообразными свойствами его соединений. Эта сложность проявляется прежде всего в том, что благодаря близости окислительно-восстановительных потенциалов пар ионов плутония эти ионы могут находиться в равновесии друг с другом в водном растворе. Кроме того, иопы промежуточных степеней окисления —- Ри + и РиО+ — [c.8]


    Химические свойства гидрида плутония примерного состава РиНг, изучены в работе Брауна и сотрудников [245]. По данным этой работы, гидрид состава РиНа, получается прямым соединением плутония с водородом при 150— 250° с индукционным периодом 20—30 мин. Его свойства мало отличаются от свойств металла. Он устойчив на воздухе до 150°. [c.69]

    Для отделения плутония от урана и продуктов его распада существует ряд различных приемов. Эти методы можно разделить на осаждение, жидкостную экстракцию (разд. 9.9) и ионообменные процессы (разд. 9.8) фактически это те же методы, которые используют для разделения искусственных радиоактивных изотопов (разд. 5.8). Все они основаны на том, что плутоний, как уран и нептуний, может иметь несколько степеней окисления и что химические свойства данного элемента в одной степени окисления сильно отличаются от химических свойств этого же элемента в другой степени окисления. Отличия между элементами в разных степенях окисления, использованные I процессах осаждения и жидкостной экстракции для выделения плутония, приведены в табл. 5.12. [c.175]

    После щелочноземельного металла радия добавочные электроны присоединяются к и 5/ оболочкам, образуя так называемую актинидную группу, аналогичную лантанидной группе шестого периода. Однако химические свойства актинидов не так сходны, как химические свойства лантанидов, так как добавочные электроны, присоединяющиеся у актинидов к 5/ и 6с/ оболочкам, больше удалены от ядра и связаны менее прочно, чем соответствующие электроны 4/ и Ъс1 оболочек у лантанидов. Например, лантаниды существуют в водных растворах главным образом только в трехвалентном состоянии, тогда как уран, нептуний и плутоний в водных растворах существуют в четырехвалентных состояниях. [c.285]

    Как И В случае лантаноидов, у элементов семейства актиноидов происходит заполнение третьего снаружи электронного слоя (подуровня 5/) строение же наружного и, как правило, предшествующего электронных слоев остается неизменным. Это служит причиной близости химических свойств актиноидов. Однако различие в энергетическом состоянии электронов, занимающих 5/- и 6 /-под-.уровни в атомах актиноидов, еще меньше, чем соответствующая разность энергий в атомах лантаноидов. Поэтому у первых членов семейства актиноидов 5/-электроны легко переходят на подуровень и могут принимать участие в образовании химических связей. В результате от тория до урана наиболее характерная степень окисленности элементов возрастает от - -А до +6. При дальнейшем продвижении по ряду актиноидов происходит энергетическая стабилизация 5/-С0СТ0ЯНИЯ, а возбуждение электронов на 6 -подуро-вень требует большей затраты энергии. Вследствие этого от урана до кюрия наиболее характерная степень окисленности элементов понижается от +6 до (хотя для нептуния и плутония получены соединения со степенью окисленности этих элементов и 4-7). Берклий и следующие за ним элементы во всех своих соединениях находятся в степени окисленности +3. [c.644]

    Существенный вклад внесла аналитическая химия в решение такой важной проблемы современной науки, как синтез и изучение свойств трансурановых элементов. Предсказание химических свойств трансурановых элементов оказалось более сложным, чем для элементов, входящих в периодическую систему в ее старых границах, так как не было ясности в распределении новых элементов по группам. Трудности усугублялись и тем, что до синтеза трансурановых элементов торий, протактиний и уран относились соответственно к IV, V и VI группам периодической системы в качестве аналогов гафния, тантала и вольфрама. Неправильное вначале отнесение первого трансуранового элемента № 93 к аналогам рения привело к ошибочным результатам. Химические свойства нептуния (№ 93) и плутония (№ 94) показали их близость не с рением и осмием, а с ураном. Было установлено, что трансурановые элементы являются аналогами лантаноидов, так как у них происходит заполнение электронного 5/- слоя, и, следовательно, строение седьмого и шестого периодов системы Д. И. Менделеева аналогично. Актиноиды с порядковыми номерами 90—103 занимают места под соответствующими лантаноидами с номерами 58—71. Аналогия актиноидов и лантаноидов очень ярко проявилась в ионообменных свойствах. Хроматограммы элюирования трехвалентных актиноидов и лантаноидов были совершенно аналогичны. С помощью ионообменной методики и установленной закономерности были открыты все транс-кюриевые актиноиды. Рекордным считается установление на этой основе химической природы элемента 101 — менделевия, синтезированного в начале в количестве всего 17 атомов. Аналогия в свойствах актиноидов и лантаноидов проявляется также в процессах экстракции, соосаждения и некоторых других. Экстракционные методики, разработанные для выделения лантаноидов, оказались пригодными и для выделения актиноидов. [c.16]

    Трансурановые элементы (заурановые элементы) — радиоактивные химические элементы, расположенные вслед за ураном в периодической системе Д. И. Менделеева. Атомные номера 93. Большинство известных трансурановых элементов (93—103) принадлежит к числу актиноидов. Все изотопы их имеют период полураспада значительно меньший, чем возраст Земли. Поэтому Т. э. практически отсутствуют в природе и получаются искусственно посредством различных ядерных реакций. Первый из трансурановых элементов нептуний Np (п. н. 93) был получен в 1940 г. бомбардировкой урана нейтронами. За ним последовало открытие плутония (Ри, п. н. 94), америция (Ага, п. н. 95), кюрия (Сга, п. н. 96), берклия (Вк, п. н. 97), калифорния( f, п. н. 98), эйнштейния (Es, п. н. 99), фермия (Рш, п.н. 100), менделевия (Md, п. н. 101), нобелия (No, п. н. 102), лоуренсия (Lr, п. н. 103) и курчатовия (Ки, п. н. 104). Так же получены Т. э.с порядковым номером 105— 106. Более или менее полно изучены химические свойства Т. э. Криста.члографи-ческне исследования, изучение спектров поглощения растворов солей, магнитных свойств ионов и других свойств Т. э. показали, что элементы с п. н. 93—103 — аналоги лантаноидов. Из всех Т. э. наибольшее применение нашел Ри как ядерное горючее. [c.138]

    В своей работе химику не приходится сталкиваться с легкими изотопами, претерпевающими электронный захват (Ри , рц235 Ри237) Плутоний-238 имеет значение лишь как изотопный источник энергии для космических кораблей. Безусловно, важнейший и наиболее доступный изотоп плутония — Ри . Именно с ним в основном приходится работать химику-аналити-ку. Высокая удельная активность Pu з вызывает, однако, нежелательные радиолитические эффекты в растворах и твердых соединениях, затрудняющие детальное исследование химических свойств плутония. С этой точки зрения наиболее перспективными представляются долгоживущие изотопы Ри й Pu Ч [c.9]

    После открытия Макмилланом и Абельсоном в 1940 г. нептуния (атомный номер 93) оказалось, что этот элемент по своим свойствам напоминает уран и совсем не похож на рений, стоящий в периодической таблице непосредственно выше него. Изучение химических свойств последующих элементов — плутония и других привело к выводу, что у этих элементов начинает заполняться электронный уровень 5/, и что они образуют семейство элементов, подобное семейству лантанидов. [c.5]


    Возьмите любое из последних изданий таблицы Менделеева в них неизменно лаптаноиды и актиноиды вынесены в самостоятельные строки. Аналогия химических свойств этих элементов в трехвалентном состоянии легла в основу актиноидной теории. Эта теория принесла химии большую пользу. Ио многие химики не считали и не считают ее всеобъемлющей, основополагающей. Известные экспериментальные факты, такие, например, как существование урана, нептуния, плутония и других элементов в различных валентных состояниях, эта теория объяснить [c.388]

    Ориентация прежде всего на физическую идентификацию новых элементов объяснялась главным образом аномальными химическими свойствами первых трансуранов. Вопреки ожиданиям нептуний и плутоний оказались больше похожи на уран, чем на рений и осмий. А ведь по логике периодической системы (как представлялось в то время) элементы № 93 и 94 должны были занять места в VII II VIII группах. [c.407]

    Су1я по свойствам нептуния и плутония, полагали, что, видимо, эта группа начинается с урана. Для ее членов — уранидов — самая характерная валентность б-Ь. Именно эту валентность обычно проявляли элементы № 93 и 94. А раз так, то и новый элемент № 95 должен быть шестивалентным. Следовательно, выделить его из массы плутония химическими способами окажется в высшей степени сложно и надежд на химическую идентификацию нет. [c.407]

    Под названием актиниды объединяются элементы с порядковыми номерами 89—103 включительно. До открытия трансурановых элементов торий Z = 90), протактиний (2 = 91) и уран 2 = 92) включались в IV, V и VI группы периодической системы соответственно и считались аналогами вышестоящих гафния, тантала и вольфрама. Однако отмечалось, что эта аналогия не является полной ввиду отклонений свойств элементов и их соединений от закономерностей, наблюдаемых в гомологическом ряду. Когда были открыты трансурановые элементы — нептуний и плутоний,—оказалось, что они по химическим свойствам отличаются от предполагаемых аналогов и напоминают более уран, чем рений и осмий. Исследование нептуния и плутония, а также открытых затем трансплутониевых элементов показало, что эти элементы в одинаковом валентном состоянии очень сходны друг с другом и все вместе напоминают группу лантани-дов, особенно в трехвалентном состоянии. Поэтому они и объединены [I] в семейство актинидов. По аналогии с лантанидами предполагалось, что семейство актинидов объединяет 14 элементов половина из них в о время не была еще открыта. [c.489]

    Большая подвижность 5/-электронов по сравнению с подвижностью 4/-электронов обусловливает большую склонность актинидов к комплексообразованию и существование более высоких валентностей. Последнее обстоятельство побудило некоторых исследователей выдвинуть гипотезы о существовании семейства торидов или уранидов. Возможно, что наиболее удачным, с химической точки зрения, решением является выделение урана, нептуния, плутония и америция как элементов, весьма сходных по химическим свойствам и проявляющих в водных растворах валентности - -3, -f4, -1-5, -Ь6, в группу уранидов , а элементов, начиная с кюрия, имеющих основную валентность + 3, — в группу кюридов [3]. [c.491]

    В настоящее время многие ученые склоняются к выводу, что торий и протактиний, по-видимому, вообще не имеют 5/-электронов, Что касается урана, нептуния, плутония и америция, то их электронная конфигурация зависит, вероятно, от физического состояния и степени окисления. Значит, в этом случае 5/-электроны оказывают сильное влияни,е на физические и химические свойства элементов, чем, собственно, и объясняется своеобразие свойств легких актиноидов. Поэтому второе редкоземельное семейство но сути дела оказывается вырожденным , и вряд ли правильно располагать его в периодической системе так, как требует актиноидная гипотеза. [c.196]

    Крупномасштабная плазменная технология конверсии нитратных растворов уранила и нитратных плавов была развита в свое время применительно к получению МОХ-топлива. Основные принципы процесса изложены в главе 4, там же на рис. 4.20 приведена и его аппаратурно-технологическая схема. Процесс основан па смешении дезинтегрированного нитратного смесевого раствора урана и плутония с потоком технологической плазмы. В качестве модели смесевого нитратного раствора урана и плутония использовали смесевой нитратный раствор урана и тория. Торий удовлетворительно имитирует плутоний по устойчивому валентному состоянию в растворе (-1-4), по физико-химическим свойствам диоксидов тория и плутония, устойчивости твердого раствора Ри02-1102 (ТЬ02-и02). Эксперименты по изготовлению опытных партий смесевых композиций ТЬ02 1102, которые проводили на оборудовании пилотного завода, описанного в гл. 4, показали, что плазменная технология обеспечивает крупномасштабное получение указанных композиций. [c.255]

    Химические свойства 7 элементов (астатина, франция, полония, актиния, кюрия, берклия и калифорния) из 15 рассмотренных в этой главе были изучены почти исключительно в результате исследования очень малых количеств вещества (следов) или же очень разбавленных растворов. Поведение некоторых веществ, взятых в субмикроколичествах, в том числе веществ, содержащих большинство из упомянутых 7 элементов, рассмотрены в гл. VI и в табл. VIA — VIE (часть II) сводка полуэмпирических правил относительно перехода от свойств вещества, взятого в субмикроколичествах, к свойствам этого же вещества в макроколичествах дана в разделе 8 гл. VI. Свойства веществ, взятых в субмикроколичествах, полностью не исследованы, в связи с чем упомянутые правила следует применять с осторожностью, однако радиохимическое изучение свойств веществ в очень малых количествах все же сыграло огромную роль в открытии и исследовании многих новых элементов. Почти все факты, установленные путем опытов с субмикроколичествами этих элементов, были в дальнейшем подтверждены химическими экспериментами с макроколичествами. Наиболее интересным примером того, какую роль сыграли эти опыты, является успешная работа завода по выделению плутония в Хенфорде, ибо технология этого процесса была разработана частично на основе радиохимического исследования следов впервые искусственно приготовленного нового элемента, а частично на основании изучения субмикрометодами нескольких микрограммов плутония, полученного при помощи циклотрона. Коэффициент увеличения масштаба при переходе от опытов с субмикроколичествами к заводскому процессу был приблизительно равен [S16, S17] .  [c.147]

    Так же как в случае урана и нептуния, степени окисления плутония равны -f-3, -f-4, -1-5 и -f-6. В то время как в водных растворах соединений урана наиболее устойчивым является состояние, характеризуемое степенью окисления - -6, а при степени окисления -f-3 уран является сильным восстановителем (выделяет водород из воды), плутоний наиболее устойчив при степени окисления - -4. Интересно, что все четыре типа ионов плутония могут сосуществовать в равновесии друг с другом, и притом в измеримых концентрациях. Поэтому водные растворы плутония представляют превосходный объект для изучения явлений диспропорционирования и относительной степени гидролиза ионов, находящихся в различных степенях окисления. В данной среде каждой степени окисления плутония соответствует особый характеристический спектр поглощения (см., например, статьи [Н126, С53, К66, К71]), что значительно облегчает анализ и изучение химических свойств этого элемента. [c.183]

    Согласно гипотезе Кориелла [см. Ill], в атомах элементов от актиния до протактиния (или до урана) более легко заполняются бй-орбиты в элементах же от плутония до кюрия начинают заполняться 5/-орбиты. В результате получается смешанный 5/-бй-ряд . Хардвик [Н112] считает, что гипотеза о существовании смешанного ряда наилучшим образом объясняет имеющиеся данные по химическим -свойствам. [c.192]

    В настоящее время о химических свойствах нептуния и плутония известно достаточно, чтобы поместить их в ряд актинидов, аналогичный хорошо изученному ряду лантанидов. Поэтому химические свойства последующих членов этого ряда можно было точно предсказать, что облегчило их выделение, в частности, с использованием метода ионообменного разделения (разд. 9.8). Элемент америций эоАш впервые был получен (1944) в результате реакций [c.166]


Смотреть страницы где упоминается термин Плутоний химические свойства: [c.9]    [c.9]    [c.7]    [c.114]    [c.400]    [c.492]    [c.152]    [c.146]    [c.182]    [c.557]    [c.293]   
Основы общей химии Том 2 (1967) -- [ c.252 ]




ПОИСК





Смотрите так же термины и статьи:

Плутоний



© 2025 chem21.info Реклама на сайте