Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Скандий в природе

    Минералы, руды и месторождения скандия. Скандий — типичный рассеянный литофильный элемент. Содержание его в земной коре 6-10" % (по данным А. П. Виноградова). Несмотря на то что скандий более широко распространен в природе, чем Sb, Bi, Ag и Au, значительных концентраций он не образует. Основная его масса, рассеяна в изверженных горных породах содержание ЗсгОз в них 0,0002— 0,0003% 111]. [c.16]

    Разделения методы (в аналитической химии) — важнейшие аналитические опера ции, необходимые потому, что большинство аналитических методов недостаточно селективны (избирательны), т. е. обнаружению и количественному определению одного элемента (вещества) мешают многие другие элементы. Для разделения при меняют осаждение, электролиз, экстракцию, хроматографию, дистилляцию, зонную плавку и другие методы. В качественном анализе для разделения ионов элементов применяют групповые реагенты, которые позволяют трудно разрешимую задачу анализа сложных смесей привести к нескольким сравнительно простым задачам. Рассеянные элементы — химические элементы, которые практически не встреча ются в природе в виде самостоятельных минералов и концентрированных залежей а встречаются лишь в виде примесей в различных минералах. Р. э. извлекают попутно из руд других металлов или полезных ископаемых (углей, солей, фосфори тов и пр.). К Р. э. принадлежат рубидий, таллий, галлий, индий, скандий, германий п др. [c.111]


    Такого плана я пытался придерживаться при подготовке второго издания Общей химии . Мною введены две новые главы, посвященные атомной физике (гл. П1 и Vni). В этих главах довольно подробно рассмотрены вопросы, связанные с открытием рентгеновских лучей, радиоактивности, электронов и атомных ядер, описана природа и свойства электронов и ядер, изложена квантовая теория, фотоэлектрический эффект и фотоны, теория атома по Бору, отмечены некоторые изменения наших представлений об атоме, внесенные квантовой механикой, рассмотрены другие вопросы учения о строении атома. Все это позволит студенту первого курса вычислить энергию фотона света данной длины волны и предсказать, приведет ли поглощение света данной длины волны к расщеплению молекулы на атомы. Некоторые разделы элементарной физической химии в книге изложены подробнее, чем это было сделано в первом издании. Введена отдельная глава, посвященная биохимии. Значительной переработке подверглось изложение химии металлов. Рассмотрение вопросов, относящихся к химии металлов, начинается теперь с главы, в которой показаны характерные особенности металлов и сплавов и описаны методы добычи и очистки металлов. Затем следуют три главы, посвященные химии переходных металлов в первой главе рассмотрены скандий, титан, ванадий, хром, марганец и родственные им металлы во второй — железо, кобальт, никель, платиновые металлы в третьей — медь, цинк, галлий, германий и ближайшие к ним по свойствам металлы. В той или иной мере пересмотрено и большинство других глав. [c.10]

    Если состав макроциклических комплексов катионов щелочных и щелочноземельных металлов, как уже упоминалось, существенно зависит от соотношения размеров иона металла и полости макроцикла, а в случае координационных соединений -переходных металлов решающую роль нередко играет природа аниона соли, то на взаимодействие краун-эфиров с катионами лантаноидов и скандия влияют оба названных фактора. В тех случаях когда г з+/гь > 1, в присутствии слабо [c.187]

    Рассмотрение распределения следов элементов в природе не входит в план настоящей книги, однако небезынтересно привести таблицу распространения редких элементов в вулканических породах (табл. 1). Некоторые из указанных в ней значений являются приближенными. Для большинства элементов среднее содержание в земной коре такое же, как и в вулканических породах. Многие из так называемых редких элементов встречаются в природе столь же часто, как и элементы, которые обычно считают распространенными. Германий имеется примерно в таком же количестве, как и мышьяк, галлий — как свинец, церий — как цинк скандием природа богаче, чем ртутью или висмутом, и т. д. Редкие элементы тем или [c.13]

    Массовое содержание скандия, иттрия и лантана в земной коре составляет приблизительно 10" %. Массовое содержание актиния в земной коре значительно ниже (порядка 10 %), поскольку оба его изотопа Ас и Ас, встречающиеся в природе, радиоактивны. [c.282]

    Гидроокись скандия — амфотерное соединение. Осаждается в виде белого студенистого осадка действием растворов аммиака или не очень концентрированных растворов ЫаОН на растворы солей скандия в широком интервале pH. На полноту осаждения не влияет присутствие значительных количеств аммонийных солей в растворе и избыток осадителя [7] pH начала осаждения - 4,В—4,9 [91. При осаждении вначале образуются малорастворимые основные соединения, которые при увеличении концентрации ионов ОН превращаются в 5с(ОН)з. Величина pH образования и состав этих соединений зависят от природы аниона (прочности связи 8с — неорганический лиганд). [c.4]


    Нахождение в природе. Содержание скандия в земной коре оценивается равным 0,0006%. В природе скандий рассеян и встречается лишь в виде незначительной примеси в минералах редкоземельных элементов, бериллия, тантала, ниобия, олова, вольфрама, циркония, титана, алюминия, а также в золах углей, природных водах и окаменелых остатках рыб. Для получения 1 г оксида скандия нужно переработать 3—4 кг гадолинита, [c.205]

    Электровосстановление скандия и иттрия также происходит в две ступени или же непосредственно до металлического состояния в зависимости от природы растворителя [1178]. Электродные процессы необратимы, с повышением pH раствора необратимость уменьшается. [c.91]

    Блочная структура наиболее часто встречается в кристаллах, выращиваемых на некачественную затравку, и ее дефекты, в том числе и блоки, наследуются растущим кристаллом, а также в кристаллах с примесью скандия, ванадия и хрома. В последнем случае, по-видимому, на совершенстве структуры граната сказывается влияние разницы в размере ионных радиусов алюминия в октаэдрической координации и замещающих его ионов. В целом природа ростовых блоков изучена недостаточно и требует специальных исследований. [c.186]

    Скандий, иттрий н лантан имеют ио одному устойчивому изотопу 5с-45, -89 и La-I39. Для всех лантаноидов, кроме прометия, известны устойчивые и ютоны нромстнй не имеет ни одного устойчивого и 0Т0па. Актиний и актиноиды также не имеют устойчивых изотопов—дни все радиоактивны. Однако среди радиоактивных изотопов тория и урана встречаются относительно устойчивые, в свяан с чем эти элементы встречаются в природе в относительно больших количествах, представляющих практический интерес. [c.260]

    Ядра и изотопы. Скандий, иттрий и лантан имеют по одному устойчивому изотопу 2iS (100%), Y (100%), sfLa (99,911%). Для изотопа La, являющегося радиоактивным, характерен большой период полураспада — 10 лет в природе он открыт в незначительных количествах (0,089%). Актиний не имеет ни одного устойчивого изотопа. Известно 10 его радиоактивных изотопов, из которых наиболее устойчивым является Ас с периодом полураспада 21,6 года. [c.57]

    Лантаноиды обычно встречаются в природе вместе, иногда совместно с иттрием, лантаном, скандием, торием, гафнием, цирконием, ниобием, танталом и др. Общее весовое содержание лантаноидов и лантана не превышает 0,01%. И все же можно указать целый ряд минералов, в которых встречаются и превалируют те или другие элементы — лантаноиды. Такими минералами являются силикаты и фосфаты церия и других элементов и соответствующие соли иттриевых земель (см. ниже). Первые называются цери-товыми минералами, а вторые иттриевыми. Всего известно до 180 минералов, содержащих лантаноиды. [c.276]

    Природные соединения и получение германия, олова и свинца. История открытия германия является поучительным примером научного предвидения, основанного на знании фундаментальных законов природы. Через два года после опубликования периодической системы, в 1871 г., Д. И. Менделеев предсказал существование нескольких неизвестных в то время элементов, в том числе экасилиция, и описал основные свойства этих элементов и некоторых их соединений. Спустя 15 лет (в 1886 г.) немецкий химик Винклер в природном минерале аргиродите обнаружил элемент, по свойствам тождественный предсказанному под № 32 экасилицию. Это открытие подтвердило огромное значение периодического закона, и позднее Д. И. Менделеев назвал германий, скандий и галлий элементами — укрепителями периодической системы . [c.216]

    Скандий был предсказан Д. И. Менделеевым (экабор), открыт в 1879 г. Нильсоном в процессе разделения РЗЭ эрбиевой подгруппы, полученных из скандинавского гадолинита, В природе известен один стабильный изотоп Искусственные радиоактивные его изотопы [1, 2] имеют небольшой период полураспада и являются и Р "-излучателями. Скандий первый элемент, у которого достраивается не внешний уровень, а предшествующий внутренний подуровень. Его электронная конфигурация [Аг] Это аналог алюминия, но проявляет более основные свойства. [c.3]

    Таким образом, к 1907 г. были открыты 14 редкоземельных элементов (а также скандий и иттрий). Элемент №61 до настоящего времени в природе обнаружен не был даже в ничтожных количествах. Он впервые искусственно получен только в 1947 г. Маринским и Гленденином в США [8] из продуктов деления урана в ядерном реакторе назван прометием. Установлено существование одиннадцати его изотопов — от до Фт. Наиболее долгоживущий изотоп (2,64 г) полу- [c.50]

    Дело даже не в том, что Д. И. Менделеев опубликовал свою таблицу несколько раньше Л. Мейера. Для Л. Мейера таблица была удобной формой систематики элементов, за которой он не смог увидеть всеобщего закона Природы. Б 1870 г. Л. Мейер писал, что целый ряд элементов по своим свойствам не укладывается в системы, если нм приписать общепри)1Ятые в то время- атомные веса. Указывая на это, Л. Мейер делал следующее заключение Было бы преждевременно принимать изменения до сих пор принятых атомных весов на такой ненадежной основе. Вообще в настоящее время на подобного рода аргументы нельзя ни слишком сильно полагаться, ни ожидать от них столь же определенного решения вопроса, как от определения теплоемкости или плотности пара . В этой цитате со всей очевидностью проявилось отношение Л. Мейера к периодическому закону. Д. И. Менделеев не только исправил атомные веса бериллия, индия, церия, лантана, иттербия, эрбия, тория, урана, но и с большой точностью предсказал свойства еще не открытых эле< ментов — галлия, скандия, германия. В этом и заключается триумф периодического закона Д. И. Менделеева. [c.82]

    Большая группа элементов (многие переходные металлы) образует гидриды с преимущественно металлическим характером связи. Все они являются фазами внедрения. Состав большинства металлоподобных гидридов отвечает формулам ЭН, ЭН2. Иногда встречаются и гидриды состава ЭН3. Соотношение элементов в формульных единицах не зависит от природы металла, правило формальной валентности здесь не соблюдается, а состав определяется общими закономерностями образования фаз внедрения. Водород способен внедряться не только в октаэдрические пустоты плотноупакованных структур, что отвечает составу АВ, но и в тетраэдрические (состав АВ2). Если же атомы водорода занимают и октаэдрические, и тетраэдрические пустоты, реализуется состав АВд. Поскольку в реальных условиях водород может занимать лишь часть пустот соответствующего типа, указанные составы являются предельными и возможно отклонение от них в сторону недостатка водорода. Поэтому все металлоподобные гидриды являются односторонними фазами переменного состава ЭН1-2 , ЭН2-1, ЭНз- . Переходные металлы 4-го периода с кайносимметричной 3rf-оболочкой, во-первых, растворяют водород, а во-вторых, образуют фазы внедрения. При этом первая четверка 3d-металлов (Ti — Мп, взаимодействие скандия с водородом не изучено) хорошо растворяет водород в твердом состоянии, но образуют лишь по одному гидриду. Металлы УП1В-группы (Fe, Со, Ni), напротив, плохо растворяют водород, но образуют по нескольку гидридов. Взаимодействие с водородом первых пяти элементов 5-го и б-го периодов подчиняется тем же закономерностям — образование ограниченных твердых растворов и гидридов. Исключением является молиб- [c.269]


    Скандий, иттрий и лантан в природе обычно встречаются вместе с четырнадцатью лантаноидами — элементами от церия (атомный номер 58) до лютеция (атомный номер 71). Все эти элементы, за исключением прометия (полученного искусственно), обнаружены в природе в очень нобольших количествах, причем основным источником этих элементов является минерал монацит — смесь фосфатов редкоземельных элементов, содержащая также некоторое количество фосфата тория. [c.528]

    Понятия редкоземельные элементы и лантаноиды часто путают. Между тем это не одно и то же. Лантаноиды — это элементы, заряды ядер которых имеют промежуточные значения между зарядами ядер лантана и гафния. К ним относятся 14 элементов церий, празеодим, неодим, прометий, самарий, европий, гадолиний, тербий, диспрозий, гольмий, эрбий, тулий, иттербий, лютеций. В число редкоземельных элемеитов входят помимо перечисленных еще три элемента скандий, иттрий и лантан. Это объединение 17 элементов под оЗщим названием удобно потому, что скандий, нттрий н лантаи очень похожи по своим химическим свойствам на лантаноиды. Поэтому н в природе все 17 элемеитов обычно ьстречаются в д l x и тех же рудах. [c.121]

    Соединения с другими неметаллами. Скандий, европий и иттербий образуют гидриды состава ЭНг — черные порошки, обладающие высокой электрической проводимостью. По своей физико-химической природе они являются металлоподобными гидридами и, следовательно, только формально похожи на солеобразные гидриды щелочно-земельных металлов. Остальные РЗЭ образуют гидриды ЭНг и ЭН3. Последние также представляют собой фазы внедрения, т.е. металлоподобны. Для лантана наиболее устойчивым является гидрид состава ЬаНг,5, который можно рассматривать как эквиформульный раствор ЬаНг и ЬаНз. Гидриды ЭН3 легко гидролизуются. [c.352]

    Открытие Д. И. Менделеевым Периодического закона и создание им Периодической системы химических элементов послужило важным импульсом в развитии химии и смежных с ней естественных наук. Руководствуясь Периодн< ческим законом, Д. И. Менделеев предсказал существование нескольких но вых элементов, с большой точностью теоретически обосновал их свойства и указал те места, которые должны занять эти элементы в естественном ряду известных элементов. Последующее открытие существующих в природе элементов скандия Зс, галлия Оа и германия Ое блестяще подтвердило предвидение Менделеева. Много позже в природе были обнаружены элементы полоний Ро и рений Ре и искусственно получен радиоактивный лемент технеций Тс, также предсказанные автором Периодического закона. [c.109]

    В природе скандий и иттрий встречаются в рудах вместе с лантаноидами содержание в земной коре 5,1 10- % 5с, 2,6-10- % V. Наиболее распространенный минерал для скандия — тортвейтит 5с251207. [c.405]

    Когда Менделеев составлял свою таблицу на основании открытого им периодического закона, многие элементы не были известны. Руководствуясь рядом соображенТ1Й, Менделеев пришел к выводу, что в природе должны существовать еще неизвестные элементы, и оставил для них в периодической системе пустые места. Он предсказал свойства трех таких элементов на основании их положения среди других элементов в таблице. Одному из них Менделеев дал название экабор, так как этот элемент, по мнению Менделеева, должен был походить по свойствам на бор. Два другие были названы экаалюминием и экасилицием. Еще при жизни Менделеева эти три элемента были открыты. Первым был открыт галлий его свойства оказались такими, какие были предсказаны для экаалюминия. Затем был открыт скандий, обладающий свойствами экабора, и, наконец, германий, имеющий свойства, предсказанные для экаси-лиция. [c.46]

    Под названием редкоземельных металлов объединена большая группа,, как правило, трехвалентных элементов, соединения которых по свойствам весьма сходны между собой. В эту группу входят элементы с атомными номерами от 58 до 71 включительно. Ясно выраженными свойствами редкоземельных металлов обладают также скандий (21), иттрий (39) и лантан (57), вследствие чего их также причисляют к этой группе металлов. Торий обычно также рассматривается как один из членов этой, группы вследствие сходства некоторых из его химических свойств и потому что в природе он обычно встречается вместе с трехвалентными редкоземельными металлами. Все перечисленные металлы образуют основные окислы, имеюш,ие, за исключением окиси тория, формулу М2О3. Некоторые из этих металлов образуют также и, окислы с более высокой степенью окисления, из которых наиболее известна СеОд. В этом соединении церий проявляет сходство с единственной окисью тория ТЬОа- [c.617]

    Скандий, иттрий и лантан, входящие в состав группы Illa периодической таблицы, в природе обычно встречаются вместе с четырнадцатью редкоземельными элементами от церия (атомный номер 58) до лютеция (атомный номер 71) Все эти элементы, за исклю- [c.426]


Смотреть страницы где упоминается термин Скандий в природе: [c.90]    [c.55]    [c.65]    [c.168]    [c.175]    [c.9]    [c.28]    [c.441]    [c.738]    [c.346]    [c.352]    [c.116]    [c.529]    [c.613]    [c.51]    [c.50]    [c.606]    [c.346]    [c.193]    [c.161]   
Основы общей химии Том 2 (1967) -- [ c.228 , c.229 ]

Основы общей химии Том 2 Издание 3 (1973) -- [ c.72 ]




ПОИСК





Смотрите так же термины и статьи:

Скандий



© 2025 chem21.info Реклама на сайте