Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Таллий в природе

    Элементы главной подгруппы III группы в природе. Получение и применение. Рассматриваемые элементы встречаются в природе только в виде соединений. По распространенности алюминий занимает третье место среди всех элементов после кислорода и кремния [содержание его в земной коре составляет 8,13% (масс.)]. Галлий, индий и таллий относятся к сравнительно мало распространенным элементам их содержание в земной коре соответственно составляет [c.435]

    Нахождение в природе и получение галлия, индия и таллия [c.186]

    Опыт 30. Сравнение химической природы и растворимости гидроксидов таллия (1) и таллия (1П). К растворам хлоридов таллия (I) и таллия (III) прилейте раствор щелочи. В каком случае наблюдается выпадение осадка Установите его химическую природу. [c.100]


    Разделения методы (в аналитической химии) — важнейшие аналитические опера ции, необходимые потому, что большинство аналитических методов недостаточно селективны (избирательны), т. е. обнаружению и количественному определению одного элемента (вещества) мешают многие другие элементы. Для разделения при меняют осаждение, электролиз, экстракцию, хроматографию, дистилляцию, зонную плавку и другие методы. В качественном анализе для разделения ионов элементов применяют групповые реагенты, которые позволяют трудно разрешимую задачу анализа сложных смесей привести к нескольким сравнительно простым задачам. Рассеянные элементы — химические элементы, которые практически не встреча ются в природе в виде самостоятельных минералов и концентрированных залежей а встречаются лишь в виде примесей в различных минералах. Р. э. извлекают попутно из руд других металлов или полезных ископаемых (углей, солей, фосфори тов и пр.). К Р. э. принадлежат рубидий, таллий, галлий, индий, скандий, германий п др. [c.111]

    Кривые дифференциальной емкости в расплавах для большинства исследованных металлов (свинец, кадмий, олово, алюминий, сурьма, серебро, таллий, висмут, индий, галлий и теллур) имеют форму, близкую к параболической, с ярко выраженным минимумом и практически симметричными ветвями (рис. 78). Потенциалы минимума во всех случаях близки к потенциалам максимума электрокапиллярной кривой в расплаве, т. е. к п. н. з. соответствующего металла. Емкость в минимуме достаточно высока 0,20- 0,75 Ф/м в зависимости от природы металла и расплава. [c.137]

    Выделение металло-энзимов (ме-талло-коэнзимов) в отдельную (в какой-то мере, особую) группу природных соединений связано с их химическим строением они являются комплексными соединениями металлов и их солей с органическими лигандами различной природы, образуя класс природных соединений симбиозом органических и неорганических субстанций Т.е. это действительно тот класс соединений, который не может быть единолично отнесен ни к органической, ни к неорганической химии — он однозначно дитя химии природных соединений. [c.353]

    Ряд напряжений. При погружении металлической пластинки в воду (или раствор соли данного ме талла) под действием полярных молекул воды -ионм металла частично отрываются от поверхности пластинки. В результате этого на поверхности металла остается некоторое количество избыточных электронов. Гидрати рованные (окруженные молекулами воды) ионы металла размещаются вблизи поверхности металлической пластинки. Возникает двойной электрический слой. Образующаяся при этом разность потенциалов между мег таллом и раствором называется электродным потенциаг лом металла (рис. 37). В зависимости от химической природы металлов (строения их атомов, склонности их ионов к гидратации) различные металлы посылают в растворы разные количества ионов и, следовательно, на их поверхности остается неодинаковое число электронов. Так, у меди, ртути, серебра, золота и некоторых других металлов способность посылать ионы в растворы выражена очень слабо. [c.138]

    В устойчивых соединениях элементы этой группы проявляют степень окисления +3, находясь в состоянии /гsV -возбуждения. Исключение составляет таллий, для которого характерна также степень окисления 1. В природе они встречаются только в виде соединений, причем галлий, индий, таллий относятся к редким элементам. В свободном виде их получают электролизом из расплавов соединений. Металлы этой группы легкоплавкие, имеют серебристо-белый цвет. Галлий, индий и таллий очень мягкие, режутся ножом. Наблюдаемое нарушение закономерного изменения некоторых свойств при переходе от А1 к Оа возникает вследствие различия в строении предпоследнего электронного уровня атомов алюминия (8), галлия (18). [c.229]


    Алюминий широко распространен в природе, остальные элементы этой группы-редкие. Галлий-спутник алюминия, индий и таллий находятся в полиметаллических рудах. Все с оединения таллия очень ядовиты. [c.177]

    Галлий (Gallium). Индий (tndium). Таллий (Thallium). Эти элементы принадлежат к числу редких и в сколько-нибудь значительных концентрациях в природе не встречаются. Получают нх главным образом из цинковых концентратов после выплавки из них цинка. [c.638]

    Галлий, индий и таллий встречаются в природе в виде устойчивых изотопов (табл. 42). [c.172]

    Гидроксиды галлия индия и таллия в природе не встречаются. [c.445]

    Реже всего встречается в природе таллий. Минералы его немногочисленны, но небольшие количества таллия (тысячные доли процента) содержатся во многих полиметаллических рудах. Пыль, накапливающаяся в очистительных камерах при обжиге этих руд, содержит редкие металлы, в том числе и таллий. Эту пыль растворяют в воде, вытесняют металлический таллий более активным цинком или выделяют его из раствора при помощи электролиза, [c.306]

    Как уже отмечалось, изменения резонансной частоты при переходе некоторых ядер из одного химического окружения в другое могут быть значительными. Это открывает многообещающие возможности для изучения тончайших деталей поведения молекул и выведения ЯМР на уровень информативности рентгеноструктурного анализа (расстояния, углы) и даже выше (определение природы химической связи). Например, диапазон изменения химических сдвигов кобальта составляет 20 000 м. д., молибдена — 5000 м. д., таллия — 32 000 м. д. [c.733]

    Распространенность в природе. Галлий, индий и таллий являются редкими и рассеянными элементами, мас-i совые доли в земной коре равны соответственно 1,5-10 J ЫО-5 и Они встречаются в виде примесей к [c.231]

    С меньщей уверенностью можно сделать заключение о природе процесса на других металлах второй электрохимической группы — свинце, цинке, кадмии и таллии. Больщинство экспериментальных данных свидетельствует о замедленном протекании разряда с последующей электрохимической десорбцией атомов водорода. Заметное повышение перенапряжения Еюдорода при переходе от положительно заряженной поверхности к поверхности, заряженной отрицательно, наблюдается на свинце, кадмии и таллии и связано с перестройкой двойного слоя, приводящей к десорбции анионов и прекращению их активирующего действия на разряд положительно заряженных гидроксониевых ионов Н3О+ (см. рис. 19.1). Если -бы скорость выделения водорода определялась не разрядом, а другой стадией, например рекомбинацией, то изменение структуры двойного слоя не могло бы вызвать такого изменения водородного перенапряжения. [c.414]

    Ковалентная природа безводных галидов алюминия сказывается в их легкоплавкости, растворимости в органических веществах, способности к образованию димеров, полимеров и комплексных ионов. Последнее особенно характерно для фторида алюминия, взаимодействующего с фторидами таллов с образованием гексас )тороалюминатов  [c.255]

    Галлий, нндий и таллий встречаются в природе каждый в виде двух изотопов. Природные изотопы индия об.ладают естественной радиоактивностью с длительным, однако, периодом полураспада. Природные изотоны галлия и таллия стабильны. Известно много искусственных радиоактивных изотопов этих элементов. [c.335]

    Оксиды галлия и индия по химической природе амфотерны, И2О3 имеет основный характер. С водой они не взаимоде(1ствуют. Оксиды галлия и иидия при взаимодействии с кислотами образуют соответствующие соли. ТЬО взаимодействует с водой с образованием гидроксида таллия (I), а с кислотами образует соли таллия [c.337]

    В зависимости от природы носителей зарядов различают два рода проводимости электронную и ионную (электролитическую). Соответственно различают проводники первого и второго рода. К проводникам первого рода относятся к -таллы, графит, угли, сульфиды и карбиды металлов к проводникам второго рода растворы электролп-тов, чистые вещества — ионные кристаллы в твердом и расплавленном состоянии, вода, плазма и т. п. [c.87]

    Содержание бора в земной коре составляет (мае. доли, %) 3-10 , галлия — 1,5-10 , индия — 1 10 , таллия — 3-10 . Бор в природе находится в основном в виде кальциевых и магниевых солей полиборных кислот (В20з)п-(Н20)т, значительно реже — буры и борной кислоты. Элементы подгруппы галлия — рассеянные, галлий сопутствует алюминию и цинку, малые количества индия и таллия можно обнаружить изоморфно распределенными в сульфидных полиметаллических рудах. При переработке руд цветных металлов получают также таллий, а при переработке горючих ископаемых получают галлий. [c.270]

    Сульфиды металлов часто и в больших количествах встречаются в природе в виде многочисленных минералов (колчеданы, блески, обманки). Сульфиды встречаются при этом как в виде нормальных, так и в виде субсульфидов, тиосульфидов, а также смешанных сульфидов. Многие из природных сульфидов являются главным источником получения некоторых металлов. При этом выделяющиеся ме-, таллы стремятся как можно полнее освободить от примеси серы, так как ее присутствие ( в виде сульфидов) отрицательно сказывается на металлических сплавах, ухудшая их механические свойства. [c.18]

    Из рассматриваемых элементов наименее распространен в природе таллий. Содержание его в земной коре примерно 4-10 вес.%. Минералы таллия очень редки. К ним относятся круксит и др. Таллий содержится в большинстве полиметаллических руд, но в небольших количествах (в тысячных и десятитысячных долях процента). [c.187]

    Оксиды галлия, индия и таллия в природе в свобюдном состоянии не найдены. [c.443]

    Хотя таллий и образует несколько минералов, например лоран-дит Т1Аз52 и крукезит (Т1,Си, Ag)2Se, они также весьма редки. Интересно отметить, что в природе таллий встречается в степени окисления 4-1. Это подтверждается валовым составом указанных минералов. Основным сырьем для получения таллия служат полиметаллические руды, в которых он присутствует в виде примеси. Извлечение таллия из пыли, получающейся при окислительном обжиге этих руд, основано на растворимости оксида таллия в горячей воде. Полученный гидроксид переводят в сульфат таллия, который и подвергают электролизу. Существуют способы, по которым сначала получают плохо растворимый Т1С1, который восстанавливают до металла цинком. Возможно также восстановление оксида таллия углем или водородом. [c.157]

    Процесс этот имеет прикладное значение, поскольку глиоксале-вая кислота является исходным сырьем для синтетического получения ванилина и ванилаля. Электрохимическое восстановление щавелевой кислоты сильно зависит от природы металла, используемого в качестве катода. На катодах с низким перенапряжением выделения водорода — никеле, платине, восстановления не наблюдается, в то время как на катодах из ртути, свинца, амальгамы таллия и кадмия процесс восстановления протекает без существенных затруднений. Наиболее эффективно процесс осуществляется на кадмиевом катоде, потенциал точки нулевого заряда которого, как показано на рис. 202, наиболее сильно сдвинут в электроотрицательную сторону, а перенапряжение выделения водорода велико. [c.448]

    В 1861 г. Крукс при спектроскопическом изучении состава пылей сернокислотного завода обнаружил зеленыЬ линии неизвестного ранее элемента, который получил название таллий (от лат. — зеленый). Сначала высказывалось прдположение, чтЬ это неметалл, аналогичный селену и теллуру, однако уже в 1862 г. Лями, которому первому удалось получить немного таллия, установил его металлическую природу. Весьма своеобразные химические свойства таллия привлекли к себе внимание ученых, и в первые годы по( ле открытия его усиленно изучали. В дальнейшем интерес к таллию уменьшился. И только начиная с 20-х годов нашего века, когда организовано промышленное производство таллия, число работ, посвяф енных ему, снова сильно возросло. [c.325]


    Германий в природе часто связан с другими рассеянными элементами — галлием, индием и таллием. Галлий встречается вместе с германием в германите и реньерите, в углях и железных рудах. В медных рудах вместе с германием часто содержатся индий и Таллий. В цинковых рудах могут находиться все четыре элемента. Поэтому часто технология германиевого сырья является комплексной. [c.176]

    Коррозия металлов. При взаимодействии ме-таллов с окружающей средой на их поверхности обра- зуются соединения, обладающие совершенно иными -евойствами че еталлы. Подобные процессы по химической природе являются окислительно-восстановительными. [c.399]

    Электродный потенциал В этом случае металл будет заряжаться положи-.металла может быть тельно. Разность потенциалов между пластиной ме-положительным и И1 талла и раствором зависит от природы металла и отрицательным концентрации ионов, участвуюпгих в равновесии у поверхности металла. Цинк приобретает более положительный потенциал, чем медь, так как более склонен к растворению-переходу в ионное состояние, чем к осаждению в виде металла. Два металла — цинк и медь, погруженные в раствор их ионов, могут быть соединены так, как это показано на рис. 13.1, образуя электрохимическую ячейку. Растворы сульфатов цинка и меди (И) разделены пористой перегородкой. Металлические пластины — это электроды ячейки, соединенные через вольтметр. Поскольку на электродах протекают реакции [c.305]

    Ионы металла легко образуют в водных растворах комплексы, если в растворах присутствуют подходящие лиганды. Наличие электрического заряда приводит к тому, что ионы металла, даже будучи гидратированными , плохо экстрагируются в органическую фазу. С нейтральными комплексами ситуация может быть совершенно иной, особенно если по своей природе они являются ковалентными. На рис. 4.5-15 представлены данные по экстракции таллия(Ш) трибутилфосфатом (ТБФ) в гекеане из водных хлорадных растворов. Экстрагируемым веществом является Т1С1з. Следовательно, можно записать  [c.222]


Смотреть страницы где упоминается термин Таллий в природе: [c.446]    [c.456]    [c.124]    [c.293]    [c.146]    [c.556]    [c.386]    [c.298]    [c.172]    [c.65]    [c.161]    [c.213]    [c.339]    [c.288]    [c.151]   
Основы общей химии Том 2 (1967) -- [ c.217 ]

Основы общей химии Том 2 Издание 3 (1973) -- [ c.59 ]




ПОИСК





Смотрите так же термины и статьи:

Таллий



© 2025 chem21.info Реклама на сайте