Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Таллий одновалентный

    Алюминий — основной представитель металлов главной подгруппы III группы периодической системы химических элементов Д. И. Менделеева. Атомный номер 13, относительная атомная масса 26,98154. У алюминия единственный устойчивый изотоп А1. Свойства аналогов алюминия — галлия, индия и таллия — во многом напоминают свойства алюминия. Этому причина — одинаковое строение внешнего электронного слоя элементов — s p, вследствие которого все они проявляют степень окисления +3. Другие степени окисления нехарактерны, за исключением соединений одновалентного таллия, по свойствам близким к соединениям элементов I группы. В связи с этим будут рассмотрены свойства только одного элемента — алюминия и его соединений. [c.150]


    В таблице видны сходства двухвалентных самария, европия и иттербия с щелочноземельными металлами, одновалентных меди, таллия и серебра, двухвалентных меди, цинка и кадмия и отличие от них двухвалентной ртути, что, вероятно, связано с влиянием инертной электронной пары по второму диагональному направлению. Практически совпадают константы двухвалентных хрома, марганца и железа, [c.27]

    Цементация и электролиз. Таллий при цементации на цинке или при электролизе должен выделяться из растворов перед кадмием (см. табл. 37). Однако изменение потенциала в зависимости от концентрации (потенциал таллия как одновалентного металла сильнее зависит от концентрации, чем потенциал, например, индия) приводит к тому, что при малой концентрации таллий выделяется после выделения основной массы кадмия. В частности, при осаждении первичной кад- [c.351]

    Помимо валентности 1 +, таллий может проявлять и естественную для элемента III группы валентность 3- -. Как правило, соли трехвалентного таллия труднее растворить, чем аналогичные соли таллия одновалентного. Последние, кстати, изучены лучше и имеют большее практическое значение. [c.219]

    Описанная реакция специфична для свинца. Только барий, стронций или кальций дают осадки, состоящие из кристаллов, похожих по форме на кристаллы соединения свинца однако кристаллы соединения бария бесцветны, а кристаллы, получаемые со стронцием или кальцием, имеют зеленый цвет. Для получения комплексной соли свинца вместо соли меди можно брать соль никеля, что не приводит к значительному изменению вида кристаллов вместо калия можно применять ионы рубидия, цезия и таллия (одновалентного), соли которых лучше растворимы, чем соли калия. При выполнении реакции на свинец лучшие результаты получаются в случае соотношения РЬ Си = 1 10. Однако это соотношение строго соблюдать необязательно, так как предельные отношения допускают большие отклонения. [c.63]

    Согласно их положению в периодической таблице, галлий, индий и таллий трехвалентны. В отличие от бора и алюминия галлий может быть также двухвалентным, индий — одно- и двухвалентным, а таллий — одновалентным (см. табл. 70, стр. 554). Галлий и индий в низших степенях окисления менее устойчивы, чем в трехвалентном состоянии. В своих трехвалентных соединениях галлий и индий во многом похожи на алюминий. Их гидроокиси, как и гидроокись алюминия, амфотерны, а их соли в водных растворах гидролизуются. Оба металла образуют квасцы, изоморфные алюминиевым квасцам (стр. 387). Таллий в одновалентном состоянии более устойчив, чем в трехвалентном. В трехвалентном состоянии он сильно отличается от алюминия. [c.571]

    Таллий может в некоторой степени влиять на выход по току в связи с окислением на аноде его одновалентных ионов до трехвалентных ((рп+ лЗ+= +1,22 в) и последующим восстановлением [c.500]

    Для элементов других главных подгрупп с релятивистскими эффектами связывается следующее. Как правило элементы 6-го периода этих подгрупп имеют характерные валентности на 2 единицы меньше, чем другие, более легкие, элементы. Так, для таллия, находящегося в третьей подгруппе, характерная степень окисления равна -Ы. Также с релятивизмом связано существование соединений одновалентного висмута. Энергия сцепления атомов между собой в простом веществе (энергия когезии) этих элементов обычно также ниже, чем в других случаях. [c.86]

    Если нельзя воспользоваться раствором хлористого калия (когда один из растворов содержит растворимые соли серебра, одновалентной ртути или таллия), то применяется солевой мостик из азотнокислого аммония, натрия или уксуснокислого лития. Для неводных растворов в солевом мостике используются растворы иодистого натрия в метиловом спирте и роданистого калия в этиловом спирте. [c.28]


    Таллий растворяется только в кислотах, превращаясь в катион ТГ. Азотная кислота и царская водка окисляют его до Т1 . Со щелочами не реагирует. Для него более характерна низшая валентность 1+. Гидроокись ТЮН — сильная щелочь. Одновалентность таллия объясняется наличием инертной пары из двух 5-электронов на внешнем (шестом) электронном уровне, как в атоме ртути и в ионах [c.280]

    Подгруппа хлоридов включает одновалентные медь, серебро, золото, таллий, двухвалентный свинец, выделяемые в виде плохо растворимых в воде хлоридов. Подгруппа сульфидов основного характера включает сульфиды меди (II), кадмия (II), олова (И), висмута (III). В этой же группе могут быть выделены технеции (IV), рутений (И1), родий (III), палладий (И). [c.31]

    В геохимических процессах таллий преимущественно участвует в виде одновалентного. Его геохимия имеет двойственный характер. С одной стороны, он ведет себя как литофильный элемент, близкий к калию, рубидию и цезию, с другой стороны, — как халькофильный. Особенно близок таллий к рубидию, что объясняется практически одинаковыми ионными радиусами (1,49 А). [c.339]

    Как в сероводородном (второй форзац) так в кислотно-щелочном (стр. 14—15) и аммиачно-фосфатном (стр. 16—17) методах выделяется аналитическая группа плохорастворимых хлоридов. В ее состав входят катионы элементов 1В подгруппы в одновалентном состоянии и примыкающие к ним по горизонтальному направлению ртуть (I), таллий [c.20]

    Таллий и свинец принадлежат к главным подгруппам и являются р-элементами. По химико-аналитическим свойствам Т1+ и РЬ + сходны с подгруппой 1В (подгруппа серебра). Кажущаяся одновалентность [c.175]

    В дальнейшем внутри подгруппы с возрастанием заряда ядра (а следовательно, и числа энергетических уровней) металлические свойства усиливаются. Алюминий — уже металл, но не типичный. Его гидроокись обладает амфотерными свойствами. У таллия более сильно выражены металлические свойства, а в одновалентном состоянии он близок к металлам I группы. [c.303]

    Галогениды одновалентного таллия Т1Г — типичные соли, не подвергающиеся гидролизу в водных растворах. По растворимости они ведут себя противоположно галогенидам типа ЭГз. TIF растворим лучше по сравнению с другими галогенидами. [c.210]

    Электронные конфигурации индия и таллия приведены в табл. 26, а их основные физико-химические параметры — в табл. 27. Химически In и Т1 сильно отличаются друг от друга. Индий напоминает рассмотренный в предыдущей главе галлий, отличаясь несколько большей устойчивостью одновалентного состояния (тем не менее кислородсодержащие соли 1п(1) неизвестны). Для таллия основное состояние одновалентное. Соединения Т1(1) по свойствам напоминают соединения, соднойстороны, щелочных металлов, с другой, серебра и свинца. Таллий (1И) близок к индию (П1), но соединения этого ряда для таллия часто неустойчивы, а некоторые из них вообще получить не удается. Если отвлечься от восстановительных свойств, то те соединения индия (1), которые удается получить, весьма напоминают по остальным свойствам соединения таллия (I). Для таллия весьма характерно образование смешанных солей, включающих T1(I) h Tl(III). Для индия соединения такого рода известны лишь в галогенидах и некоторых близких к ним соединениях. В отличие от галлия индий и таллий с геохимической точки зрения проявляют преимущественно халькофильный характер и извлекаются главным образом из руд тяжелых цветных металлов. [c.281]

    Таллий. Легко растворяется в азотной кислоте. В серной кислоте растворяет ся труднее, в соляной — плохо вследствие образования малорастворимого хлорида одновалентного таллия. [c.345]

    Аналитические свойства ионов калия во многих отношениях близки к свойствам ионов аммония, рубидия, цезия и одновалентного таллия [256] Вследствие ненадежности количественного отделения калия от натрия получили распространение косвенные методы определения калия (и натрия), не отличающиеся, однако, высокой точностью [c.10]

    Кроме калия, с нитрокобальтиатом взаимодействуют ионы аммония, рубидия, цезия, одновалентного таллия, которые мешают обнаружению калия Мешают также окислители, свободные щелочи, иодиды [216]. Щелочноземельные металлы, железо, алюминий, цинк и другие катионы не дают осадков [1788, 2379]. [c.14]

    Таллий. Одновалентный таллий образует с дитиофосфатами белый кристаллический осадок [(С2Н50)2р35]Т1 (т. нл. 92°), не растворимый в разбавленных и растворимый в концентрированных сильных кислотах н уксусной кислоте. Осадок диэтилдитиофосфата таллия обладает значительной растворимостью в воде. Предельное разбавление 1 650, открываемый минимум 1600 X- Фториды нри pH, тартраты нрн pH 9—13, цианид нри pH 9 и комплексон III нри pH 9 не мешают осаждению одновалентного таллия дитиофосфатами. [c.178]

    Имея три электрона на внешней оболочке, элементы подгруппы галлия проявляют валентность 3. Из-за присутствия одного неспаренного электрона они могут быть и одновалентны, причем от галлия к таллию устойчивость трехвалентных соединений уменьшается, а одновалентных увеличивается. Это связано с усилением поляризуюш,его действия трехзарядных ионов (с 18-электронными наружными обо- [c.223]

    При нагревании выше 100° таллий быстро окисляется с образованием окислов ТЮг и TI2O3. В отличие от галлия и индия одновалентные соединения таллия более устойчивы, чем трехвалентные. Одновалентные соединения таллия по своим свойствам близки к соединениям щелочных металлов. Гидроокись одновалентного таллия ТЮН, являющаяся сильным основанием, хорошо растворима в воде. Равным образом, хорошо растворимы в воде TI2 O3, TI2SO4. Галоидные соли одновалентного таллия трудно растворимы в воде. [c.561]

    Для подгруппы галлия известны довольно многочисленные комплексы с кислородсодержащими аддендами. Таковы, например, комплексы с ацетилацетоном Оа(СНзСО = СН—СО—СНз)з (Л = 2,5-10-2 1п(СНзСО--СНСОСНз)з (К = 8-10- в), 1п(504)з (/(=4,4 10-3) JJ др Аминокомплексы, по-видимому, образуются только трехвалентным и одновалентным таллием, во многом аналогичном по свойствам с Ag (I). Проявляемое TI (III) в соединениях координационное число по всей вероятности равно шести ([Т1Епз]С1з, Т1РузС1з и т. п.). [c.203]

    Галлий, индий, таллий расположены в П1 группе периодической системы элементов Менделеева и составляют побочную подгруппу (с. 50). Электронная конфигурация атомов представлена в табл. Г17. В отличие от В и А1 электронам валентносги у Оа, 1п, Т1 предшествует оболочка из 18ё, что приводит к немонотонному нзмененню ряда свойств элементов в подгруппе с ростом порядкового номера (см. табл. 1.17). В связи с электронной конфигурацией пз пр они проявляют степень окисления, равную +3 и +1. Устойчивость трехвалектного состояния уменьшается от Оа к Т1 (а устойчивость одновалентного состояния растет), что связано с ростом поляризующего действия трехвалентных ионов по мере увеличения их радиуса и появлением у Т1 эффекта дополнительной поляризации. Так, если для Са наиболее характерна степень окисления, равная +3, то для Т1 равная +1. [c.167]

    Следует заметить, что для образования связей и проявления степени окисления +3 необходимо участие спаренных электронов, занимающих -орбиталь в атомах этих элементов. Пара электронов 5 устойчива и принимает участие в образовании химических связей лишь у элементов, образующих прочные связи например, у алюминия валентность +3 является преобладающей. Устойчивость одновалентных состояний растет в подгруппе по мере снижения прочности связей, и у таллия известны многочисленные соединения, в которых он одновалентен. Напротив, бор в соединениях всегда трехвалентен образование ковалентных связей в общем случае может доставить энергию, необходимую для того, чтобы перевести электроны атома бора в реакционноспособное возбужденное состояние, отвечающее 5р -гибридизации. Ионизационный потенциал (первый) бора настолько высок (8,29 эВ), что образование одной связи с одновалентным катионом бора не может компенсировать затраты энергии на отрыв электрона. Направление осей гибридных облаков этого типа характеризуется углами 120°, причем все три оси лежат в одной плоскости. Поэтому молекула соединения бора типа ВС1з имеет плоскую структуру. Бор в гидридах формально ведет себя как четырехвалентный элемент. Боран ВНз в свободном состоянии неизвестен и обнаружен только как неустойчивый промежуточный продукт. Но диборан ВгНв исследован детально. Этот гидрид был использован для получения и ряда других боранов. Диборан получают в чистом виде из борогидрида натрия и три-фторида бора  [c.157]


    Судя по некоторым реакциям, ТПз имеет строение по-лииодида одновалентного таллия ТИЫг]. В растворах наблюдается равновесие [c.334]

    Помехой прогрессу следует считать движение по линии наименьшего сопротивления, а именно не всегда осознанный отказ от трактовки свойств макроскопических свойств вещества на базе учения о строении атома вместо этого переходят к попыткам систематизации элементов по группам таблицы Д. И. Менделеева согласно непосредственному сопоставлению и исканию аналогий функциональных макроскопических свойств. Так, прельщаясь плавностью перехода количественных характеристик свойств от Са к 5с, подобной такой же плавности при переходе от Mg к А1, иногда полагают, что в 111 группе главной подгруппой следует считать не серию В, А1, Оа, 1п, Т1, как полагал Д. И. Менделеев, а В, А1, 5с, У, Ьа, Ас. Во П группе главная подгруппа Ве, Mg, Са, 5г, Ва, Ка характеризуется несколько затушеванной вторичной периодичностью (из-за того, что Ва и На стоят перед 4/- и 5/-сериями) в П1 группе обращают неоправданное внимание на повторение этой затушеванности атомы Ьа и Ас также стоят до 4/- и 5/-серий и не подвергались еще лантаноидному и актиноидному сжатию, но в этих атомах присутствуют /-электроны, которых у Ва и На нет. При включении 5с, У, Ьа в одну подгруппу с В и А1 она становится функционально более однородной, так как, например, исчезает Т1, дающий соединения и одновалентного типа, но теряется, однако, конфигурационная однородность в строении атомов Б и А1 характерными являются валентные р-электроны, так же как и у Са, 1п, Т1, а для 5с, У, Ьа существенно присутствие -электронов. Между тем функциональная однородность подгруппы в принципе необязательна достаточно вспомнить для этого такую разнородную по своим основным свойствам подгруппу, как С, 8 , Ое, 5п и РЬ она во многом глубоко напоминает подгруппу В, А1, Са 1п и Т1 свинец, в частности, как и таллий (и по одной и той же вторично-периодической причине), склонен к снижению своей валентности. [c.113]

    Гидроксид таллия хорошо растворим в воде и является сильным основание м. Образуемые им соли в большинстве бесцветны и кристаллизуются без воды. Хлорид, бромид и иодид почти нерастворимы, а многие другие соли растворимы хорошо. Производные Т10Н и слабых кислот вследствие гидролиза дают в растворе щелочную реакцию. Прн действии с и л ь н ы х окислителей одновалентный таллий окисляется до трехвалентиого. [c.364]

    В качественном анализе часто пользуются образованием осадка хлороплатината калия K2[Pt l6] [58, 228, 518, 1412, 1849, 1928] Осадителем служит 5--10%-ный раствор H2[Pt ls] Реагент позволяет обнаруживать I мг К в 5 мл раствора [58, 1912, 1936, 2684, 2872] и еще мепьшие количества калия [228] Вследствие дороговизны реагента испытание на калий производят на предметном стекле, наблюдая под микроскопом характерные довольно крупные желтые октаэдры [26, 56, 60, 75, 250, 328, 346, 437, 558, 580, 593, 699, 724, 954, 1189, 1356, 1407, 1768, 1856, 1901, 1912, 2223, 2666, 2684, 2775, 2872] В капле раствора удается заметить 0,01—0,5 мкг К [56, 250, 346, 724] Добавление этанола повышает чувствительность реакции [228, 2 0, 346, 580] Такие же осадки дают ионы аммония, рубидия, цезия, одновалентного таллия Осаждение хлороплатината применяется для обнаружения калия в гистологических срезах [1620, 2048], биологических жидкостях [751], золе растений [2048], алюминии и магнии [364] [c.13]

    Из других реакций такого типа заслуживает упоминания осаждение К2РЬ Си(Ы02)б], часто применяемое для микрокристаллоскопического обнаружения калия [26, 75, 113, 193, 194, 250, 437, 520, 954, 1200, 1311, 1727, 1768, 1902, 1936. 2345, 2872] Под микроскопом наблюдаются черные блестящие кубические) кристаллы, открываемый минимум 0,15 мкг К [56, 250, 346, 437, 2684, 2872] Аналогично взаимодействуют соли аммония, рубидия, цезия и одновалентного таллия Метод применяется для обнаружения калия в разных объектах [56, 250, 364, 751, 2383] [c.15]


Смотреть страницы где упоминается термин Таллий одновалентный: [c.80]    [c.194]    [c.517]    [c.500]    [c.274]    [c.62]    [c.425]    [c.443]    [c.453]    [c.455]    [c.309]    [c.327]    [c.421]    [c.433]    [c.1533]    [c.132]   
Основы общей химии Том 2 (1967) -- [ c.216 , c.221 , c.226 , c.227 ]

Основы общей химии Том 3 (1970) -- [ c.74 ]




ПОИСК





Смотрите так же термины и статьи:

Таллий



© 2025 chem21.info Реклама на сайте