Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Торий двухвалентный

    Из металлов больше всего мешает торий двухвалентное железо и небольшие количества титана и ниобия не влияют. Препятствует определению ряд анионов — комплексообразователей (фосфаты, сульфаты и др.), ослабляющих окраску. [c.187]

    Ацетальдегид на указанном производстве получался по реакции Кучерова — гидратацией ацетилена в сернокислой среде в присутствии солей двухвалентной ртути. Процесс осуществлялся по следующей схеме в гидрата-тор загружалась кислота и ртуть система продувалась азотом до содержания кислорода в отходящем азоте менее 1 % включался водокольцевой насос, и ацетилен, барботируя через слой контактной кислоты, реагировал с водой с образованием ацетальдегида. [c.224]


    Изучение состава соединения, образующегося при взаимодействии тория с тороном, по метолу Остромысленского, показало, что они реагируют в отношении I 2, причем в реакцию вступают ионы и двухвалентные анионы, получающиеся [c.75]

    Двухвалентное железо осаждается вместе с торием правда, при проведении реакции в сильно солянокислом растворе достигается частичное разделение при низком содержании Ре . [c.143]

    Метод основан на осаждении гидроокиси тория в присутствии КСЫ и образовании двухвалентным железом при этом растворимого комплексного ферроцианид-иона [Ре(СЫ)б] [599, 2034]. 2г, Т1, Н[, 5с, Ве, А1, В1, Сг и 1п осаждаются вместе с торием. Количественное разделение гория и железа происходит лишь после переосаждения. [c.144]

    Двухвалентное железо не осаждается реагентом при описанных условиях и легко отделяется от тория. [c.145]

    Некоторые редкоземельные элементы проявляют валентность, отличную от трех. Четырехвалентный церий во всех своих соединениях весьма напоминает торий. Другие редкоземельные элементы (Рг, ТЬ н, возможно, N 5 проявляют валентность, равную четырем, только в окислах. Некоторые другие редкоземельные элементы (Ей, УЬ и с трудом 5т) могут быть восстановлены до двухвалентных (синтез 19). В двухвалентном состоянии они похожи на барий и стронций. [c.34]

    Она образуется при смешивании водного раствора солей двухвалентного кобальта с водным раствором цианата калия. Реакция лучше удается при добавлении к исследуемому раствору сухого цианата калия. Чувствительность обнаружения возрастает при добавлении ацетона (можно обнаружить 0,02 мг Со) или при экстракции окрашенного соединения изоамиловым спиртом. Цианат позволяет обнаруживать кобальт в присутствии ионов трехвалентного железа, которые не дают окрашенных соединений с реагентом. Не влияют на чувствительность обнаружения ионы ртути, мышьяка, сурьмы, олова, золота, родия,, палладия, осмия, платины, селена, теллура, молибдена, вольфрама, ванадия, алюминия, хрома, урана, титана, бериллия, цинка, марганца, рения, никеля, щелочных и щелочноземельных металлов. Несколько затрудняют обнаружение кобальта большие количества ионов с собственной окраской— меди, ванадия, хрома, платины. Ионы серебра, свинца, висмута, кадмия, редкоземельных элементов, церия, циркония и тория образуют осадки белого цвета. [c.49]

    Аналогичная методика описана и для отделения кобальта н катионов других двухвалентных металлов от галлия и индия [248], от титана, циркония и тория [247]. Во всех этих случаях практически не наблюдается соосаждение двухвалентных металлов с гидроокисями высоковалентных. металлов. [c.72]

    Гели гидроокисей металлов гидроокиси висмута, меди и сурьмы совершенно не активны гидроокиси циркония и тория катализируют расщепление, гидроокись двухвалентного титана не влияет на реакцию гидроокись свинца обладает небольшой [c.101]

    Мешающее влияние трехвалентного железа может быть устранено восстановлением его аскорбиновой кислотой. Присутствие в воде меди до 0,05 мг также не препятствует определению алюминия после добавления аскорбиновой кислоты. Это включено в ход анализа. Титан, цирконий, торий и бериллий в поверхностных водах обычно отсутствуют., Присутствие щелочных и двухвалентных металлов не препятствует определению алюминия. [c.90]

    Литий — одновалентный металл, энергично разлагающий воду с образованием щелочи. За литием идет бериллий — тоже металл, но двухвалентный, медленно разлагающий воду при обычной температуре. После бериллия стоит бор — трехвалентный элемент со слабо выраженными неметаллическими свойствами, проявляющий однако 1и которые свойства металла. Следующее место в ряду занимает углерод — четырсхвалентный неметалл. Далее идут азот — элемент с довольно ])езко выраженными свойствами неметалла кислород — типичный неметалл наконец, седьмой элемент с1)тор — самый активный из неметаллов, принадлежащий к группе галогенов. [c.48]


    Одним из компонентов комбинированной антистатической присадки, очевидно, должна быть соль двухвалентного или поливалентного металла (магния, щелочноземельных, меди, железа, марганца, никеля, кобальта, хрома, тория и др.) и различных кислот. Металлы, по-видимому, следует предпочитать двухвалентные, а кислоту — салициловую [21, 22]. Второй компонент должен быть хорошим электролитом. При добавлении менее 0,1% такого компонента электропроводность бензола должна возрастать до десятков тысяч пикосименсов. В качестве второго компонента оказались хороши тетраизоамилпикрат аммония, соли сульфоновых кислот и др. [c.235]

    Для восстановления можно также пользоваться специальным прибором —амальгаматором (рис. 92). Нижняя 92 часть прибора, под краном, предназначена для выпускания Амальгама-в нее амальгамы после того, как закончится восстановление. тор. Порядок работы с амальгаматором следующий. Нижнее расширение прибора заполняют амальгамой затем закрывают кран и выливают через верхнее отверстие лишнюю амальгаму. После этого наливают в прибор отмеренный пипеткой объем раствора хлорного железа (например, 50 мл), закрывают пробкой, открывают кран и пер< во-рачивают амальгаматор. При этом амальгама переливается в шарооб заз-ную часть прибора, содержащую испытуемый раствор. Теперь закрывают кран и энергично встряхивают раствор с амальгамой до тех пор, пока полностью не закончится восстановление. Открывают кран, причем амальгама заполняет нижнюю часть прибора, и снова закрывают кран. В в(фх-ней части прибора находится теперь раствор соли двухвалентного железа. Вынимают пробку, ополаскивают ее водой, собирая промывные воды в амальгаматор, и титруют раствор непосредственно в приборе. [c.397]

    Точку эквивалентности устанавливают, приливая в качестве индика" тора раствор крахмала. Для предохранения двухвалентного олова от окис ления кислородом воздуха восстановление его и титрование ведут в атмос" фере углекислого газа. [c.457]

    Степени окисления во втором внутреннем переходном ряду далеко не так постоянны, как в первом. Это показано в табл. 4-11, в которой перечислены степени окисления, известные для элементов этого ряда. Первые три элемента ряда —торий, протактиний и уран по изменению и устойчивости степеней окисления сходны с элементами групп IV Л, V А и VI Л соответственно. Состояние + 111 для элементов, стоящих в ряду до америция, у которого, по предположению, 5/ -электронов, неустойчиво. Существование соединений четырехвалентного кюрия, например mF и mOj, показывает, что конфигурация 5/ не так прочна, как 4/ . Состояние + 1V для беркелия и возможное существование двухвалентного америция можно понять как следствие того, что подуровень 5/ наполовину заполнен. [c.133]

    В соляно- или азотнокислых растворах такую цветную реакцию дает только торий. В уксуснокислых растворах р. з. э. также дают красно-малиновое окрашивание. Элементы, не взаимодействующие с реагентом и не обладающие яркой собственной окраской, не оказывают заметного влияния на обнаружение торня. Р. 3. э. в солянокислых растворах не дают цветной реакции, если не находятся в значительном избытке. В противном случае рекомендуется сравнение с холостой пробой, содержащей одни р. з. э. без тория. Несмотря на то, что титан. образует с реагентом неяркую оранжево-красную окраску, определение тория возможно лишь до определенного соотношения тория и титана — при условии сравнения исследуемого раствора с контрольной пробой, содержащей один титан. В случае присутствия большого количества Zr его предварительно осаждают салициловой кислотой, так как торий начинает реагировать только после насыщения циркония. Fe также мешает, поэтому его предварительно восстанавливают солянокислым гидроксиламином до двухвалентного. При определении тория в чистых растворах предельное разбавление составляет 1 1 000 000 открываемый минимум— у Th. Если определение производить капельным методом на фильтровальной бумаге, то предельное разбавление — 1 1000 000 открываемый минимум— 0,02 Y Th. Ниже приводятся предельные соотношения, при которых возможно обнаружение тория дороном в присутствии посторонних элементов  [c.75]

    Использование ацетата натрия в сернокислом растворе позволяет отделить торий от двухвалентного железа [677] при условии переосаждения. Осадок тория прокаливают до ТЬОг в присутствии небольшого количества (1МН4)2СОз, использующегося для полного удаления серной кислоты, адсорбированной осадком. Для переосаждения осадок ТЬОг переводят в раствор сплавлением с пиросульфатом натрия с последующим выщелачиванием плава холодной водой. Для восстановления Ре до двухвалентного используют НгЗ. [c.144]

    Шестивлентный вольфрам не дает с 8-оксихинолин-5-суль-фокислотой каких-либо окрашенных соединений и при условиях Определения молибдена не восстанавливается, а поэтому не влияет на результаты определения молибдена. Однако в присутствии больших количеств вольфрама (больше 10 мг) нужно увеличить количество добавляемого реагента. Определению молибдена мешают ванадий, двухвалентное железо, кобальт, цинк, большие количества меди, комплексон III и винная кислота. Кальций, магний, барий, никель, кадмий, двухвалентный марганец, трехвалентный хром, алюминий, торий, небольшие количества висмута и урана, цианид, щавелевая кислота не мешают определению молибдена. [c.228]

    По Остроумову [244], осаждение пиридином лозволяет полностью отделять железо, алюминий, хром, уран, индий, галлий, титан, цирконий, торий и скандий от кобальта (и других двухвалентных металлов). Этот метод изучался и другими авторами [1347]. Значительные количества сульфатов мешают разделению. Кро.ме того, в этом случае выделяются основные соли алюминия, железа и хрома, а осадок очень плохо отстаивается и проходит через фильтр осаждение не количественно. Если количество сульфатов невелико, разделение удается в присутствии хлорида аммония, который препятствует образованию основных солей и способствует быстрой коагуляции осадка. [c.65]

    Определение кобальта в виде комплекса с пиридин-2,6-дикарбоновой кислотой С5Нз (СООН)2 [813]. Ионы двухвалентного кобальта легко окисляются броматом калия в азотнокислой или сернокислой среде в присутствии пиридиндикарбоновой кислоты, образуя окрашенный в красный цвет анионный комплекс трехвалентного кобальта, в котором на один ион кобальта приходится две молекулы реагента. Комплекс имеет максимум поглощения при 514 ммк и молярный коэффициент погашения при этой длине волны, равный 672. Можно определять 2—100 мг мл Со. Комплекс устойчив по отношению к ионам двухвалентного олова и тиогликолевой кислоте это позволяет определять кобальт в присутствии трехвалентного марганца, который также образует окрашенный комплекс, но легко восстанавливается при действии указанных восстановителей. Не мешают катионы меди, железа и никеля, а также щелочноземельных металлов, алюминия, кадмия, ртути, галлия, индия, свинца, сурьмы, мышьяка, висмута, титана, циркония, цинка, ванадия, церия, тория, хрома, серебра, анионы перманганата, молибдата, вольфрамата, хромата. [c.145]

    Однако х.тор не выделяется в свободном состоянии, но соединяется с некоторым количеством двухвалентных ионов олова, образуя ионы четырехвалентного олов1а  [c.189]


    Возможность применения термометрического метода для анализа смесей кислот различной силы хорошо иллюстрируется работой Миллера и Томасона [1, с. 1498], которые описывают термометрическое титрование сильных кислот в присутствии гидролизирующихся катионов. Для большинства методов, пригодных для определения свободной кислоты в таких случаях [9], прибавление комплексообразующего агента с целью связывания мешающего катиона является обязательным существуют также не прямые классические титримет-рические методы. Миллер и Томасон описывают термометрическое титрование кислот в водных растворах, содержащих цирконил-ионы во фтористоводородной кислоте, уранил-ионы в серной и азотной кислотах, смесь уранил-ионов с двухвалентными ионами меди в серной кислоте, ионы тория (IV) в азотной кислоте и ионы хрома (III) в серной кислоте. Во всех этих случаях была получена стандартная ошибка ниже чем 4% при надежности 95%. Они нашли, что прибавление к раствору дополнительного количества соответствующего катиона заметно не отражалось на результате определения присутствующей свободной кислоты. [c.56]

    Ионные кристаллы в случае идеальной решетки являются изоляторами, обладают малой поверхностной энергией и поэтому их каталитическая активность мала. Если же решетка нарушена и имеет дефекты, то появляется электропроводность, зависящая от температуры. При повышении давления водорода возникает стехиометрический избыток катиона на поверхности окисла. Однако работа, необходимая для образования дефекта по Френкелю , зависит от объема в междоузлии, доступного для иона. Она будет гораздо меньше в том случае, если в кристалле имеются вакантные места для стехиометрического избытка катионов. Такие вакантные места всегда имеются в большом количестве в кристалле вещества формулы МХг (ThO , ZrO-). По условию сохранения заряда стехиометрический избыток ионов тория вызывает появление эквивалентного количества квазисвободных электронов в междоузлиях- Четырехвалентные катионы будут образовывать в два раза больше активных центров, чем двухвалентные. Поэтому ТЬОг и 2гОг должны обладать большей активностью, чем СаРг, несмотря на одинаковую структуру. От кристаллов формулы MX нельзя ожидать активности. [c.99]

    Было найдено, что металлы платиновой группы, а также окислы и соли тех элементов, которые могут быть в разных степенях окисления, как, например, окислы вольфрама, ванадия, молибдена и тория, наиболее пригодны как катализаторы процессов окисления. Кутцельниг [21] утверждает, что наиболее активные катализаторы окисления — это окислы переходных элементов, которые аходятся в минимуме кривой атомных объемов. Известно, что ионы переходных элементов способны ассимилировать электроны (присоединяя до полной оболочки, содержащей двенадцать электронов). Переходные элементы характеризуются легкостью, с которой электроны могут быть удалены из самого наружного электронного уровня и ближайшего к нему более глубокого уровня с образованием двухвалентных и трехвалентных ионов, таких, например, как ионы железа  [c.583]

    Максимумы светопоглощения экстрактов в изобутаноле находятся при 625 и 725 ммк. Оптимальные пределы концентрации фосфора составляют 0,2—1,5 мкг1мл. Определению не мешают ионы ацетата, бромида, карбоната, хлорида, цитрата, бихромата, фторида, йодата, нитрата, нитрита, оксалата, перманганата, сульфата, аммония, алюминия, бария, трехвалентного висмута, кадмия, кальция, трехвалентного хрома, двухвалентного кобальта, двухвалентной меди, двухвалентного железа, трехвалентного железа, двухвалентного свинца, лития, магния, двухвалентного марганца, двухвалентного никеля, калия, серебра, натрия, четырехвалентного тория, уранила и цинка. Концентрация ионов трехвалентного мышьяка, йодида и роданида не должна быть выше 50 мкг/мл, а концентрация силиката или четырехвалентного олова — выше 25 мкг/мл. Опре- [c.15]


Смотреть страницы где упоминается термин Торий двухвалентный: [c.150]    [c.34]    [c.432]    [c.457]    [c.58]    [c.28]    [c.651]    [c.62]    [c.108]    [c.75]    [c.36]    [c.108]    [c.397]    [c.264]    [c.196]    [c.153]    [c.550]    [c.161]   
Основы общей химии Том 2 (1967) -- [ c.264 , c.265 ]




ПОИСК







© 2025 chem21.info Реклама на сайте