Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Тории четырехвалентный

    Самый тяжелый из аналогов титана — торий — образует галогениды с максимальным по сравнению с легкими аналогами вкладом ионного взаимодействия разница в величинах электроотрицательности катиона и аниона для соответствующих галогенидов здесь выше, чем у тетрагалогенидов легких аналогов элементов подгруппы титана. Однако хлорид, бромид и йодид Th(IV), так же как галогениды четырехвалентных Ti, Zr, Hf, все же способны сублимироваться (т. е. переходить в молекулярную форму), но при более высокой температуре даже при сублимации в вакууме необходимо нагревание до 500—600° С. [c.102]


    К. Фаянс связал окраску неорганических соединений с деформацией электронных оболочек их анионов. Чем сильнее деформация, тем интенсивнее и глубже окрашено соединение. Например, деформация увеличивается в ряду ионов фторид — хлорид — бромид — иодид. Поэтому фториды почти всегда бесцветны, хлориды окрашены слабее, чем бромиды, а бромиды слабее, чем иодиды. Сульфиды окрашены интенсивнее окислов, а окислы сильнее, чем гидроокиси. К. Фаянс указал, что окраска связана также с деформирующей силой катиона. Твердые галогениды двух- и трехвалентных металлов (хлорид кальция, хлорид алюминия) бесцветные, галогениды четырехвалентных металлов (хлорид титана) окрашены, если катион малого размера, и бесцветны (хлорид тория), если катион большого размера. Радиус иона Ti + [c.32]

    Так как свойства всех редких земель сходны между собой, то лишь в редких случаях оказывается возможным производить определение отдельных элементов. Исключение представляют торий, четырехвалентный церий и окрашенные земли. Последние можно определять по их спектрам поглощения. [c.462]

    Электроны (п — 2)/-энергетического подуровня достаточно прочно связаны с ядрами атомов, причем прочность связи возрастает по мере накопления /-электронов. Поэтому на валентные свойства лантаноидов и актиноидов /-электроны влияют тогда, когда их число на подуровне менее семи. Так, например, церий и торий устойчивы в четырехвалентном, уран—в шестивалентном, а нептуний —в семивалентном состояниях. [c.321]

    Все элементы подгруппы титана, находясь в четырехвалентном состоянии, проявляют комплексообразующие свойства они могут выполнять роль центрального атома в комплексных соединениях, причем в соответствии с изменением ионного радиуса в ряду Т1—ТЬ наиболее прочными являются комплексы титана, наименее прочными — тория. [c.107]

    Подобно четырехвалентным торию и церию, Ри(1У) количественно соосаждается с фосфатом циркония (трех- и шестивалентный плутоний при этом остаются в растворе). [c.275]

    По величине ионного радиуса торий как в трехвалентном, так и в четырехвалентном состоянии превосходит все осталь- [c.9]

    При осаждении перекиси тория следует избегать сернокислых растворов, так как незначительные количества Се2(504)з окисляются перекисью водорода до труднорастворимых сульфатов четырехвалентного церия, осаждающегося вместе с торием. [c.32]

    Косвенное титрование тория. При определении тория методом оксидиметрического титрования осаждают нормальный молибдат тория из уксуснокислого раствора, контролируя полноту осаждения дифенилкарбазидом. После растворения тщательно промытого осадка в соляной кислоте восстанавливают молибдат амальгамированным цинком до Мо + и титруют последний стандартным раствором сульфата четырехвалентного церия с ферроином в качестве индикатора [323]. [c.59]

    Следует иметь в виду, что церий в четырехвалентном состоянии ведет себя аналогично торию. [c.94]

    У четырехвалентного церия сильно сказывается влияние заряда на уменьшение способности отщепления гидроксильных групп. По сравнению с e у тория при равном заряде [c.95]

    Некоторые редкоземельные элементы проявляют валентность, отличную от трех. Четырехвалентный церий во всех своих соединениях весьма напоминает торий. Другие редкоземельные элементы (Рг, ТЬ н, возможно, N 5 проявляют валентность, равную четырем, только в окислах. Некоторые другие редкоземельные элементы (Ей, УЬ и с трудом 5т) могут быть восстановлены до двухвалентных (синтез 19). В двухвалентном состоянии они похожи на барий и стронций. [c.34]

    Достаточно избирательными являются методы определения четырехвалентного урана, хотя и в этом случае присутствие тория является недопустимым. Вообще для надежного обнаружения урана можно рекомендовать одновременное, параллельное его открытие двумя-тремя методами или при использовании двух реагентов, не [c.54]


    Торий, цирконий, титан и другие четырехвалентные металлы определению мешают. [c.66]

    Определение осаждением пирофосфатами. Четырехвалентный уран из кислых растворов количественно осаждается ионами пиро-фосфорной кислоты [588, 984]. В тех же условиях в виде пирофосфатов осаждаются также и другие четырехвалентные металлы, в том числе тории, цирконий и титан. Шестивалентный уран образует растворимые кислые соли и остается в растворе [795, 796, 858]. Выпадающий в осадок пирофосфат четырехвалентного урана имеет кристаллическую структуру и легко отфильтровывается. [c.67]

    Арсеназо III не является специфическим реагентом только на уран (см. главу III), но большая избирательность может быть обеспечена в сильнокислой среде при определении урана в четырехвалентном состоянии. В указанной среде вместе с ураном (IV) с арсеназо III реагируют только цирконий и торий, причем влияние циркония может быть резко уменьшено, если определение проводить в присутствии щавелевой кислоты, маскирующей его. [c.134]

    Скандий ие осаждается с торием или четырехвалентным церием иодатом калия в присутствии концентрированной азотной кислоты, если только количество его не превышает 30 лг. [c.608]

    Отделение оксалата плутония (IV). Метод может быть использован для отделения плутония от тех же элементов, которые отделяются при оксалатном осаждении четырехвалентного урана [9, стр. 277]. Растворимость оксалата четырехвалентного плутония с увеличением кислотности (до 1,0 М HNO3) уменьшается [34, стр. 310]. Однако для более полного отделения Pu(IV) от других элементов осаждение лучше проводить. из 2 М раствора кислоты (растворимость Ри ( 204)2 при этой кислотности возрастает незначительно). Совместно с плутонием в этих условиях количественно осаждаются торий, U(IV) и редкоземельные элементы. Ниобий в зависимости от его содержания также может частично осаждаться вместе с Pu(IV). Осаждению Pu(IV) мешают сульфаты, фосфаты, фториды и некоторые органические комплексообразующие вещества [9, стр. 277]. [c.298]

    Ионы титана, циркония, тория, четырехвалентного германия нри всех изученных условиях не осаждаются диалкил- и диарилдитиофосфатами. Гафний не исследован. [c.179]

    Четырехвалентные плутоний и нептуний экстрагируются с помощью комплексообразующих соединений. Раствором декатрифтор-ацетона в бензоле оба элемента вымываются из слабых растворов НС1. При концентрации №, равной 0,5 моль л, вымываются, кроме того, Сг У, Ре , Ра , и1У торий и другие примеси [c.441]

    В табл. 18 рассматривается взаимодействие урана, тория плутония и продуктов деления с химическими реагентами, обычно применяемыми для выделения и очистки плутония из облученного урана. Поскольку на практике чаще всего приходится иметь дело с азотнокислыми растворами, то данные таблицы относятся именно к таким растворам. При этом предполагается, что в ис ходном растворе присутствуют уран в виде и02(Н0з)2 церий — в виде смеси трех- и четырехвалентных соединений цезий, стронций, барий, все редкоземельные элементы, итт.рий, родий — в виде нитратов цирконий—в виде нитрата циркония ниобий— [c.265]

    Гидроксид ТН(0Н)4 является довольно сильным основанием и неамфотерен (гидроксиды всех ранее рассмотренных Э+ были кислотными или амфотерными). Это обусловлено благородногазовым строением иона ТЬ + и его большим радиусом. Поэтому сол четырехвалентного тория мало гидролизуются. [c.609]

    Гидроксид ТЪ(0Н)4 является довольно сильным основанием и неамфотерен (гидроксиды всех ранее рассмотренных Э - кислотные или амфотерные). Это обуслоалено тем, что ион ТН имеет слрсеиие, присущее благородным газям, а также обусловлено его большим радиусом. Поэтому соли четырехвалентного тория мало гидролизуются. [c.575]

    Степени окисления во втором внутреннем переходном ряду далеко не так постоянны, как в первом. Это показано в табл. 4-11, в которой перечислены степени окисления, известные для элементов этого ряда. Первые три элемента ряда —торий, протактиний и уран по изменению и устойчивости степеней окисления сходны с элементами групп IV Л, V А и VI Л соответственно. Состояние + 111 для элементов, стоящих в ряду до америция, у которого, по предположению, 5/ -электронов, неустойчиво. Существование соединений четырехвалентного кюрия, например mF и mOj, показывает, что конфигурация 5/ не так прочна, как 4/ . Состояние + 1V для беркелия и возможное существование двухвалентного америция можно понять как следствие того, что подуровень 5/ наполовину заполнен. [c.133]

    Определение плутония (IV). Четырехвалентный плутоний количественно осаждается в виде шестиводного оксалата [48, стр. 348]. Растворимость оксалата в воде равна 10,3-10" моль/л [57, 168]. В отличие от трехвалентного оксалата, остаточная концентрация плутония в растворе при осаждении оксалата плутония (IV) с увеличением кислотности уменьшается и оптималь-. ная концентрация HNO3 или H I составляет 3—4 М. Растворимость оксалата плутония(IV) существенно понижается в присутствии этилового спирта. Метод позволяет определять плутоний в присутствии большинства элементов за исключением тория, циркония и редкоземельных элементов. Оксалаты некоторых элементов (Ва, Мп, Со, Ni, РЬ, Sn, Sr), которые осаждаются в нейтральных растворах, остаются в растворе при достаточной концентрации кислоты >3N). При небольшом содержании указанные элементы полностью отделяются при одном осажде- [c.258]

    Фениларсоновая кислота СбН5АзО(ОН)2 — весьма избирательный осадитель для четырехвалентных катионов и в первую очередь для циркония, причем в определенных условиях осаждения может быть достигнуто отделение циркония от ряда элементов, в том числе урана, тория, алюминия, железа, редкоземельных элементов и др. [243]. Войт с сотр. [707, 708] показал возможность соосаждения Ыр(1У) и Ри(1У) с фениларсонатом циркония. [c.280]

    Осаждение Ри(1У) в виде иодата применяется для отделения от многих элементов, чо главным образом от редкоземельных элементов и и (VI) [368]. Этот метод широко попользуется в аналитической практике благодаря быстроте фильтрования осадка и легкости растворения его. При значительных (> 50 мг) количествах плутония для более полного отделения от примесей осаждение лучше вести из бМ HNOз, при меньших содержаниях плутония для количественного выделения кислотность лучше понижать до 0,5— М HNOз. Отделение от тория, циркония и титана не достигается. Четырехвалентные церий и уран также осаждаются иодатом, но если раствор предварительно обработать перекисью водорода, то оба эти элемента остаются в растворе, поскольку первый из них восстанавливается, а второй ркиоляется. Обработка перекисью также благоприятна и для плутония, так как переводит его в четырехвалентное состояние. Трехвалентные редкоземельные элементы вообще легко отделяются при иодатном осаждении, но если они присутствуют в значительных количествах, требуется повторное осаждение. [c.292]

    Примерно до 1953 г. считалось бесспорным, что только Ри(У1) может извлекаться из азотнокислых растворов кислородсодержащими экстрагентами. Однако еще в 1950—1951 гг. В. И. Кузнецов, исследуя экстракцию урана и тория и учитывая аналогию тория и четырехвалентного плутония, пришел к выводу о возможности экстрагирования Ри(1У) из азотнокислых растворов, насыщенных нитратами. Это положение было подтверждено А. А. Чайхорским (1953 г.), который наблюдал переход Ри(1У) в эфирный слой из раствора 2 М ННОз, насыщенного азотнокислым аммонием. [c.311]


    Оксалатное осаждение ь кислом растворе позволяет отделить торий от Са, Sr, Ва, Mg, Со, Ni. Си, Zn, Ag, d. Sn, Pb и Bi, однако, если они присутствуют в больших количествах, то загрязняют оксалат тория, и тогда требуется либо предварительное отделение их каким-либо другим методом, либо переосаждение [1366]. У циркония имеется тенденция сооса-ждаться с торием, однако он может быть удержан в растворе избытком щавелевой кислоты. Б присутствии ионов уранила или железа в растворе должен быть избыток щавелевой киС лоты, так как значительное ее количество расходуется на комплексообразование с указанными ионами. Четырехвалентный уран осаждается вместе с торием. Оксалатным осаждением может быть достигнуто отделение от галлия [489.  [c.34]

    Аммиак и едкие щелочи [405, 406, 1865] почти не имеют практического значения для отделения тория от р. з. э. При их использовании получается высокая концентрация гидроксильных ионов даже в разбавленных растворах, что приводит к образованию очень нежелательного местного избытка реагента, вызывающего одновременное осаждение и гидроокисей р. з. э. Более пригодным для этой цели оказалось применение окислов и карбонатов некоторых металлов, например, 2пО, СиО, РЬО, 2пСОз и РЬСОз, создающих значительные концентрации гид- роксильных ионов. Использование перечисленных окислов и, карбонатов [410, 412, 763, 778, 864, 1487, 1543], а также закиси Меди и карбоната марганца [1543] обеспечивает количественное отделение тория от р. з. э. Применению любого из этих оса-дителей должно предшествовать отделение циркония и восстановление четырехвалентного церия. Определение обычно заканчивается осаждением тория в виде гидроокиси или оксалата. Однако этот метод не нашел широкого использования вследствие продолжительности и необходимости дополнительного отделения введенных ионов металла. [c.95]

    Дирссен [480] показал, что внутрикомплексная соль урана (IV) с -фенилгидроксамовой кислотой экстрагируется хлороформом. В этом случае уран (IV) может быть отделен от лантана. Торий, а также, по-видимому, другие четырехвалентные элементы, в том числе цирконий, гафний и плутоний, экстрагируются вместе с ураном (IV). [c.311]

    Изучено [338] отделение цинка от ряда элементов при помощи анионного обмена. 5—50 мг цинка в 2 н. НС1 полностью адсорбируются на 15-сантиметровой колонке, содержащей 3 з сильноосиовного анионита амберлит IPiA-400 (в С1-форме). При последующем пропускании 50 мл 2 н. НС1 практически весь алюминий, магний, медь, кобальт, никель, марганец, хром, трехвалентное железо, торий, цирконий, четырехвалентный титан,шестивалентный уран, бериллий и кальций находятся в элюате. Кадмий, четырехвалентное олово, трехвалентная сурьма и висмут ведут себя подобно цинку. Удерживается некоторое количество свинца и индия. Цинк, кадмий и индий элюируются водой и 0,25 н. азотной кислотой, которая также удаляет 20% олова и некоторое количество сурьмы, висмута и свинца. Если применять только воду, то на колонке упорно удерживается небольшое количество цинка. Описаны методы выделения цинка из растворов, свободных от индия и кадмия. [c.86]

    Однако х.тор не выделяется в свободном состоянии, но соединяется с некоторым количеством двухвалентных ионов олова, образуя ионы четырехвалентного олов1а  [c.189]

    Иодат калия образует белый осадок ТЬ(ЛОз)4 даже в присутствии 50% (<по объему) концентрированной азотной кислоты хло1риды Д0ЛЖ1НЫ отсутствовать. Таким же образам осаждаются цирконий и четырехвалентный церий, но иодаты трехвалентных редких земель легко растворяются в азотной кислоте. Эта реакция 1на торий очень чувствительна осадок может быть освобожден от следов других иодатов (за исключением Zr и Се), если его обработать несколькими миллилитрами горячего раствора, приготовленного растворением 4 г КЛОз в 500 мя , 2N азотной кислоты. [c.604]

    Обыкновенно цирконий и торий причисляют к группе редких земель, поскольку они встречаются вместе. Они отл ичают1С1я от редких земель тем, что являются всегда только четырехвалентными. Ред. [c.605]

    Четырехвалентные нитраты актинидов (более экстрагируемые, чем в любой другой степени окисления) экстрагируются как дисольваты при различных условиях [204, 287, 288, 334, 349—351]. Возможным исключением является нитрат тория, который образует два типа сольватов независимо от класса экстрагента [352—354]. Из разбавленных (менее 1,5М) растворов азотной кислоты уран экстрагируется преимущественно в виде М(КОз)4 в отсутствие кислоты соль урана может гидролизоваться [204,334,351]. При экстракции из более кислых водных растворов (6 —8Л/ HNOз) или при одновременной экстракции нитрата лития органическая фаза содержит комплексы H9M(N0з)в или, что более вероятно, Ь ,М(КОз)в [287, 351]. [c.49]


Смотреть страницы где упоминается термин Тории четырехвалентный: [c.328]    [c.204]    [c.28]    [c.10]    [c.95]    [c.132]    [c.158]    [c.118]    [c.152]    [c.204]    [c.229]    [c.75]    [c.441]    [c.607]    [c.36]   
Основы общей химии Том 2 (1967) -- [ c.249 , c.253 , c.259 ]




ПОИСК







© 2025 chem21.info Реклама на сайте