Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Актиний радиус

    Заполнение 4/ -оболочки оказывает весьма существенное влияние на строение электронных оболочек, атомные радиусы и физико-химические свойства металлов, следующих за лантаноидами (гафний, тантал, рений, вольфрам и т. д.), т. е. лантаноидное сжатие проявляется и за лантаноидами. Действительно, оно приводит, например, к тому, что металлический и ионный радиусы, возрастающие от титана к цирконию, от ванадия к ниобию и от хрома к молибдену, почти не изменяются при переходе к гафнию, танталу, вольфраму. Точно так же почти не увеличиваются металлические радиусы и ионные радиусы, отвечающие высшим валентным состояниям, при переходе от элементов ряда технеций—палладий к их аналогам рению—платине соответственно. Именно лантаноидное сжатие, происходящее в результате заполнения 4/ -оболочки, приводит к сближению свойств 5d- и 4с -переходных металлов, резко отличающихся по свойствам от более легких Зй-переходных металлов. Оно проявляется и на теплотах образования ионных соединений этих металлов и других химических характеристиках (см. главу II). Лантаноидное сжатие, а также заполнение 5й -оболочки, заканчивающееся у платины—золота, приводит к дополнительному сжатию внешних оболочек у последующих элементов ряда золото—радон, что отражается на возрастании ионизационных потенциалов последующих элементов. Вследствие этого потенциалы ионизации франция, радия, актиния оказываются соответственно выше потенциалов ионизации цезия, бария и лантана (см. рис. 6). В результате этого первые более тяжелые элементы оказываются менее электроположительными, чем последние. Сжатие внешних оболочек вследствие заполнения внутренних Af - и 5й -оболочек приводит к повышению энергии связи внешних электронов актиноидов по сравнению с их аналогами — лантаноидами. На это указывают данные, правда, пока довольно ограниченные по их потенциалам ионизации и имеющиеся уже более подробные сведения об их атомных радиусах (см. главу III). [c.51]


    Все актиниды, за исключением актиния, характеризуются заполнением уровня 5/ в электронной оболочке, что определяет подобие их физико-химических свойств. Кроме системы и—51 и отдельных сведений о силицидах тория, нептуния и плутония, никаких данных о системах, образованных элементами 5/ с кремнием, не имеется. Это лишает возможности указать общие закономерности, имеющие здесь место. Большие и сравнительно близкие по величине радиусы атомов таких элементов при металлической и ковалентной связи [620] должны определять сложность строения диаграмм состояния силицидных систем, особенно в областях, бедных кремнием. Диаграмма состояния системы и— 51 является примером. В то же время области, богатые кремнием, должны иметь простое строение, так как структура силицидов в указанных системах определяется прежде всего типом укладки металлических атомов. Это положение также подтверждается имеющимися экспериментальными данными. [c.214]

    Электронные оболочки атомов. Для атома первого элемента группы ШВ — скандия (2=21), расположенного в четвертом периоде, распределение электронов по уровням и подуровням таково 15 25 р 35 р Чз . У атомов каждого из последующих элементов добавляется к оболочке лишний уровень. Конфигурация электронов, принимающих участие в образовании химических связей, может быть записана так с1 з , т. е. на наружном уровне находятся два парных -электрона и на уровне, соседнем с наружным, один -электрон. Все они проявляют однозначную валентность, равную 3. От скандия к актинию вместе с увеличением числа электронных уровней в атоме возрастают их радиусы, уменьшаются величины ионизационных потенциалов. [c.58]

    Подгруппа П1В. По строению внешнего энергетического слоя члены этой подгруппы — 5с, У, Ьа, Ас — похожи на щелочноземельные металлы, яо отличаются от них появлением электрона в -подуровне предвнешнего слоя, энергетически близкого к -электронам внешнего слоя, поэтому устойчивая степень окисления элементов равна -ЬЗ. Радиусы атомов и ионов элементов средние между щелочноземельными металлами и элементами подгруппы галлия и увеличиваются от скандия к актинию. Сила их восстановительных свойств также является средней между щелочноземельными металлами и семейством галлия и растет от скандия к актинию. Окислительно-восстановительный потенциал отрицательнее водорода. В свободном состоянии в природе они не встречаются и не вытесняют водород из растворов его ионов. Элементы с водородом образуют гидриды, сходные по свойствам с гидридом алюминия АШз, но с более высокой ионностью связи. Склонны к реакциям комплексообразования. Гидроксиды 5с(ОН)з, (ОН)з, Ьа(ОН)з и А1(0Н)з — основания более сильные, чем гидроксид алюминия, и сила оснований в подгруппе растет сверху вниз. В природе встречаются в рудах совместно с лантаноидами и актиноидами. [c.317]

    Захариасен [Z19] указал, что у тяжелых элементов в этой переходной группе имеются две степени окисления. За исключением, возможно, тория и протактиния, для всех элементов от Z = 89 до Z == 98 характерна степень окисления + 3. Все элементы этой группы, за исключением актиния, кюрия, а возможно, и протактиния, америция и калифорния, могут находиться также в состоянии со степенью окисления -j- 4. В соответствии с этим Захариасен высказал предположение, что когда степень окисления равна 4, можно говорить о ряде торидов , а когда она равна -]-3, —-о ряде актинидов . Он составил таблицу значений радиусов редкоземельных ионов с тремя положительными зарядами (включая европий) в ионных кристаллах, а также соответствующую таблицу для группы тяжелых переходных элементов (за исключением всех элементов после америция) и пришел к выводу, что наблюдаемые при этом закономерности отвечают, повидимому, особенностям заполнения /-орбит. [c.192]


    В первое подсемейство входит единственный элемент - актиний, ближайший аналог лантана по химическому поведению. Оба элемента проявляют в соединениях единственную степень окисления +3 несколько больший радиус иона Ас + (0,107 нм), чем Ьа + (0,104 нм) определяет некоторые количественные различия их характеристик. Например, стандартный потенциал Е° (М " /М) для актиния еще несколько более отрицателен (-2,60 В), чем для лантана (-2,52 В). [c.385]

    Характеристика элемента. В ряду скандий — иттрий — лантан — актиний усиливаются металлические признаки элементов. Вместе с тем, если скандий по свойствам напоминает алюминий, то иттрий и последующие элементы по своим качествам приближаются к щелочноземельным. Увеличение атомного радиуса и более плотное экранирование внещних электронов от ядра приводит к усилению [c.323]

    В связи с увеличением ионного радиуса от скандия к актинию (5с + 0,83  [c.68]

    Открытие и идентификация редкоземельных элементов осуществлялись в течение длительного периода времени, что объясняется сходством свойств этих элементов в связи с преобладанием у них трехвалентного состояния и близостью их атомных и ионных радиусов. С другой стороны, известно, что трудности, связанные с изучением трансурановых элементов, определяются не химическими свойствами, а ядерными. Действительно, с химической точки зрения изменения в свойствах сравнимы для элементов от актиния до урана, с одной стороны, в сериях V—Мо и Ьа—Ш (если поместить лантаниды в одну серию), с другой, однако, изменения в свойствах элементов Ьа—N(1 имеют мало общего с предыдущими. Примерог тому может служить постепенное изменение основного характера элементов от лантана к неодиму, в то время как это свойство быстро меняется в обратном направлении от актиния к урану. Атомные объемы мало изменяются в сторону уменьшения в первой серии и быстро увеличиваются во второй. Многообразие валентностей и, Ыр, Ри и Ат (ураниды), для которых известна максимальная валентность VI и минимальная III, не позволяет рассматривать эти элементы как химические гомологи N(1, Рт, 8т и Ей, так как ни один из этих последних не имеет валентности выше III, а 8т и Ей имеют малоустойчивую валентность II. Только начиная с Ст трехвалентное состояние является преобладающим в седьмом периоде и кюриды (2 = 96—103) становятся гомологами лантанидов 0с1 — Ьи. [c.125]

    Все соединения актинидов одной и той же валентности изоморфны и строение их ионов одинаково трехвалентные актиниды в водных растворах существуют в виде ионов четырехвалентные — в виде ионов пятивалентные — в виде ионов МО и, наконец, шестивалентные — в виде ионов М0 +. Радиусы ионов актинидов закономерно уменьшаются от актиния к последним членам ряда (табл. 1-14), что аналогично так называемому лантанидному сжатию. Постоянные решетки изоморфных солей и межатомные расстояния М.—О изменяются также закономерно. [c.490]

    Актиний — металл серебристо-белого цвета, внешне сходный с лантаном. Известны две модификации актиния — низкотемпературная а и высокотемпературная р. а-Фаза имеет кубическую гранецентрированную решетку (а = 5,011 А). Температура плавления актиния равна 1050° С, на 200° выше температуры плавления лантана. Температура кипения, вероятно, близка к 3300° С. Атомный радиус—1,88 А (по Бокию 2,03 А) и ионный радиус—1,11 А близки к атомному (1,87 А) и ионному (1,04 А) радиусам лантана. [c.343]

    Галогениды актиния. Галогениды актиния очень похожи на галогениды редкоземельных элементов. Они изоструктурны соответствующим соединениям лантана. Это связано с близостью ионных радиусов и электронной структуры лантана и актиния. [c.344]

    Размеры атомов и ионов следуют периодичности системы Менделеева исключение составляют элементы от № 57 (лантан) до № 71 (лютеций), где радиусы атомов не растут, а равномерно уменьшаются (так называемое ланта-нидное сжатие), и элементы от № 89 (актиний) и дальше (так называемое актинидное сжатие). [c.137]

    Сильно радиоактивный ион Ас + обладает электронной конфигурацией инертного газа радона. По своим химическим свойствам актиний весьма напоминает La + с той лишь разницей, что он является более основным. Ионные радиусы их также почти равны. Большая основность Ас + проявляется в его более сильной сорбции катионообменными смолами и в меньшей экстракции трибутилфосфатом из азотнокислых растворов. [c.310]

    Система атомных радиусов элементов дана на рис. 45 (см. стр. 125). Можно видеть, что в общих чертах изменение атомных (металлических и ковалентных) радиусов подобно сдвигам в табл. 10 и 11, выполненным нэ основе анализа строения трех внешних электронных оболочек. Так, взаимное расположение подгрупп и специфические изломы кривых атомных радиусов элементов первых трех групп в точности отвечают их взаимному расположению в табл. 10 и 11, Такое же соответствие имеет место для элементов IV—Vni групп. Однако металлические радиусы обнаруживают и дополнительные тонкие отклонения, обусловленные особенностями строения более глубоких оболочек, чем учитываемые в табл. 10 и И. Так, лантаноидное сжатие проявляется в небольшом уменьшении атомных радиусов последующих элементов, что приводит к некоторому дополнительному смещению вправо франция, радия, актиния и всех актиноидов. Обнаруживается небольшой перелом на рубидии. [c.159]

    Как видно из приведенных данных, наиболее распространены в природе натрий и калий, которые встречаются в виде хлоридов, сульфатов, силикатов и некоторых других соединений. Литий, рубидий и цезий входят в состав кристаллических решеток минералов тех элементов, к которым они близки по атомным и ионным радиусам. Рубидий близок по ионному радиусу (0,73 А) к калию (0,59А), и поэтому его соединения накапливаются в минералах, содержащих калий. Литий встречается в минералах вместе с магнием и железом. Франций, не имея стабильных изотопов, находится в ничтожных количествах в радиоактивных рудах актиния и урана. [c.316]

    Основные сведения о химических свойствах актиния получены при исследовании образцов, содержащих микроколичества элемента. В реакциях актиний проявляет себя исключительно как трехвалентный элемент и как аналог лантана. Но для него характерны несколько более выраженные основные свойства. Соли актиния гидролизуются труднее, чем соответствующие соли лантана. Все индивидуальные соединения актиния изоструктурны с соответствующими соединениями лантана. Ионный радиус Ас + равен 1,10 А [87], а Ьа +— 1,06 А. [c.229]

    Металл имеет гранецентрированную структуру с =5,311 А. Атомный радиус металла, равный 1,88 А, лишь немногим больше атомного радиуса металлического лантана в гранецентрирован ной кубической форме. Таким образом, атомный радиус металлического актиния несколько меньше, чем можно было бы ожидать на основании различия кристаллических радиусов Ас и La ,  [c.18]

    Поскольку актиний трудно выделить из природных источников, исследователи давно пришли к выводу, что химические свойства актиния очень близки к химическим свойствам лантана и редкоземельных элементов. Актиний, как и редкоземельные элементы, образует не растворимые в воде фторид, гидроокись, оксалат, карбонат и фосфат. Физические свойства галогенидов актиния, насколько они изучены, очень похожи на свойства соответствующих галогенидов редких земель. Все те чистые соединения актиния, которые были приготовлены и охарактеризованы, изострук-турны с соответствующими соединениями лантана. Кристаллохимические исследования показали, что размеры иона Ас наибольшие из всех известных трехзарядных ионов радиус его равен 1,10 А. Ионный радиус лантана равен 1,06 А, небольшое различие ионных радиусов (0,04 А), наряду с тем фактом, что оба иона имеют аналогичную электронную структуру инертного газа, в равной мере обусловливает сходство химических свойств. Заключение о подобии актиния и редких земель подтверждается его поведением при соосаждении с носителями. Из табл. 2.2 очевидно, что химические свойства Ас , о которых можно судить на основании наблюдаемого поведения при соосаждении с носителями, действительно [c.19]


    КО менее эффективно, чем Сз+, а актинами иногда более эффективно, чем К+ [76]. Возможно, это обусловлено наличием других мостиковых атомов кислорода, образующих водородные связи с N1 4 такого взаимодействия с ионами металлов нет. О комплексообразовании Т1+ [76] и Ag+ [59] с актинами и полиэфирами также сообщалось, и это не удивительно с точки зрения близости их атомных радиусов и зарядов к зарядам и радиусам ионов щелочных металлов. [c.262]

    Для атомов элементов собственно подгруппы скандия характерно -распределение электронов. Поскольку энергии электронов па 5 и -уровнях весьма близки между собой, скандий, иттрий, лантан и актиний и своих соединениях трехвалентны и проявляют более или менее сильные металлические свойства. Их ионные радиусы закономерно возрастают но мере увеличения порядковых номеров элементов [c.159]

    Для актиния и элементов семейства актинидов приводятся следующие значения ионных радиусов (А)  [c.302]

    Из химических свойств следует отметить высокую реак-дионную способность тех и других как металлов и ослабление ее с возрастанием заряда ядер в связи с уменьшением радиусов атомов. Из физических свойств можно указать на ларамагнетизм, свойственный как лантаноидам, так и актино- [c.61]

    Краткая характеристика актиноидов. Энергии подуровней 5f, Ы у этих элементов сближены сильнее, чем подуровней 4/, Ъс1 и б5 у лантаноидов. Следовательно, элементы должны проявлять степени окисления выше -ЬЗ чаще, чем в семействе лантаноидов. Все элементы радиоактивны и, начиная с нептуния, являются искусственно полученными. Свойства относительно хорошо изучены для элементов до америция. Для остальных элементов имеется только ограниченное число данных. Радиусы атомов и ионов установлены неточно и, по-видимому, лежат между актинием и лантаном, постепенно уменьшаясь от тория к лауренсию. [c.325]

    Торий, как известно, часто относят к актинидам, причем он является первым членом этого ряда (расположен в периоде после актиния). Однако рассмотрение химии тория пе как члена ряда актинидов, а как элемента IV побочной подгруппы более целесообразно (с. 230), поскольку свойства элементов-металлов IV группы и их соединений в ряду Т1—ТЬ изменяются закономерно, в полном соответствии с законом Менделеева. Кроме того, ТЬ является полным электронным аналогом Т1, 2г, Н1 (валентные электроны располагаются на (п— )й- и и5 -подуровнях). В соответствии с обычной закономерностью в ряду Т1 — ТЬ происходит также увеличение атомных и ионных радиусов (табл. 1.9). Однако если разница в величинах атомных радиусов Т1° и 2г°, а также радиусов их четырехзарядных ионов составляет величину 0,15—0,2 А, т. е. является обычной для элементов одной подгруппы, находящихся в соседних периодах, то переход от 2г к Н не только не вызывает увеличения радиуса атома или иона, а, напротив, приводит к их некоторому уменьшению. Эта аномалия в ходе изменения радиусов связана с тем, что элемент Н1 расположен в IV периоде непосредственно за лантанидамн и лантанидное сжатие влияет в максимальной степени именно на размеры атома Н1. Фактическое отсутствие разницы в размерах атомов и ионов 2г и Hf является причиной поразительной близости их свойств, что в свою очередь обусловило трудность обна- [c.92]

    Актиний действительно подобен лантану. У них очень сходные химические свойства общая валентность (3+), близкие атомные радиусы (1,87 и 2,03 А), почти идентичное строение большинства соединений. Как и у лантана, боль нпнство солей актиния окрашено в белый [c.329]

    Химия элементов, атомный номер которых больше, чем урана, тесно связана с химией урана, тория, актиния и редкоземельных элементов. Максимальное валентное состояние трансурановых элементов при окислении + 6. Устойчивость этого валентного состояния и других состояний, больших +3, уменьшается с увеличением атомного номера. Следовательно, валентное состояние + 3 является наиболее важным окисленным состояинем для элементов, следующих за плутонием, хотя существование всех четырех состояний валентности известно для трансурановых элементов, включая америций. В условиях слабого окисления, часто встречающегося в химической практике (например, в присутств.чи нитрат-нона или воздуха), наиболее устойчивым для урана в водных растворах является валентное состояние +6. В аналогичных условиях преимущественным для нептуния является валентное состояние Ч-5, а для плутония +4. Устойчивость к окисле 1ию аналогичных твердых соединений указывает на такую же зависимость от атомного номера. За исключением различий в устойчивости к окислению и восстановлению, химическое поведение аналогичных сое.динений урана н трансурановых элементов соверш енно одинаково разница в их поведении связана с атомным радиусом, зависящим от атомного номера, [c.151]

    Гидроокиси редкоземельных элементов — это наиболее сильные основания из всех гидроокисей трехвалентных элементов, исключая, быть может, актиний. По своей основности они располагаются между такими сильными основаниями, как Mg(0H)2 и А1(0Н)з. Амфотерность для них ни в коей мере не характерна. Здесь опять уместно сопоставить свойства лантаноидов и -элементов. У последних ионные радиусы с ростом заряда ядра уменьшаются довольно значительно, и это сказывается на увеличении амфотерности их гидроокисей. Большинство трехзарядных ионов -элементов входит в состав анионов. Между тем, трехвалентные ионы лантаноидов в обычных соединениях являются исключительно катионами. Это объясняется тем, что на всем протяжении от лантана до лютеция у них сохраняется относительно большой ионный радиус. Лишь у гидроокиси четырехвалентного церия в очень слабой степени проявляются и кислотные свойства. Например, некоторые соли цериевой кислоты (цераты), в частности Na2 eOз, получены даже в твердом состоянии. В целом основность гидроокисей редкоземельных элементов убывает от лантана к лютецию. В воде гидроокиси [c.133]

    Кристаллографические данные. В пользу родства актинидов — элементов, следующих за актинием,— говорит изоморфизм кристаллических структур окислов ТНОд, РаОд, иОд, КрОа, РиОд и АтОа и регулярное уменьшение радиуса металлического иона в кристаллической решётке этих окислов (последнее — за исключением Ра и Аш, окислы которых имеют смешанный состав типа РадОд — РаОд). Изоморфными оказались также соединения типа ХР4 (где Х = ТЬ, и, Нр, Ри), ХРд, ХС1д и ХО (где Х = и, Кр, Ри, Аш). [c.154]

    Металлический актиний был впервые получен в количестве нескольких миллиграммов восстановлением АсСЦ парами калия при 350° С [85], а также восстановлением АсРз парами лития [86]. Оптимальный температурный интервал для проведения реакции 1100—1270° С. Фторид предварительно осаждали из водного раствора и высушивали при 200° С. Решетка металла кубическая гранецентрированная с йо = 5,311 А [85]. Атомный радиус актиния (1,88 А) лишь немногим больше радиуса лантана. [c.229]

    Кристаллографические данные. В пользу родства актинидов — элементов, следующих за актинием, говорят изоморфизм кристаллических структур окислов ТЬОг, РаОг, ПОг, КрОг, РиОг и АшОг и регулярное уменьшение радиуса металлического иона в кристаллической решетке этих окислов (последнее — за исключением Ра и Ат, окислы которых имеют смешанный состав типа РагОз — РаОг). Изоморфными оказались также соединения типа ХР4 (где Х = ТЬ, П, Кр, Ри), ХРз, ХС1з и ХО (где X = и, Мр, Ри, Ат). [c.155]

    Нужно отметить, что кривые изменения атомных радиусов не только подтверждают правомерность сдвига легких элементов первых двух периодов в таблице Менделеева, но и отражают также некоторое смещение ряда натрий—аргон влево по отношению к своим более легким аналогам, вследствие чего эти элементы представляют начало ответвления в канедой группе -переходных металлов. Эти смещения особенно велики для металлических радиусов натрия, магния и алюминия. Вполне определенно выявляются сдвиги вправо по отношению к более тяжелым аналогам всего ряда металлов 4-го периода, от калия до цинка, причем этот сдвиг распространяется и дальше на элементы главных подгрупп 4-го периода от галлия к криптону. Совершенно определенно все редкоземельные металлы иттриевого ряда сдвинуты вправо по отношению к металлам цериевого ряда. Атомный радиус актиния (III группа) лежит на продолжении ветви иттрий—лантан, а атомные радиусы актиноидов (тория—плутония) лежат на продолжении ветвей лантаноидов, приближаясь к атомным радиусам соответствующих тяжелых переходных металлов (гафнпя— осмия). [c.126]

    Кристаллографические данные. В пользу родства А. — элементов, следующих за актинием, — говорит изоморфизм кристаллич. структур окислов ТЬОз, РаОа, ОО , NpOз, РнО. и АтО и регулярное уменьшение радиуса металлич. иона в кристаллич. решетке этих окислов. Изоморфными оказались также соединения типа (где X — и, ТЬ, Д р, Ри), ХРз, ХС1д и ХО (где X — и, Кр, Ри, Ат). Вычисленные из кристаллографич. данных ионные радиусы, как видно из табл. 1, меняются весьма схожим образом в рядах лантанидов и А. [c.51]


Смотреть страницы где упоминается термин Актиний радиус: [c.303]    [c.708]    [c.111]    [c.154]    [c.383]    [c.675]    [c.51]    [c.540]    [c.64]    [c.18]    [c.107]    [c.161]   
Основы общей химии Том 2 Издание 3 (1973) -- [ c.147 ]




ПОИСК





Смотрите так же термины и статьи:

Актин

Актиний



© 2025 chem21.info Реклама на сайте