Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Актиний электронное строение

    Это обстоятельство приводит к необходимости разделения 14 элементов на два ряда по 7 элементов в каждом и группировки элементов обоих семейств, представленной в табл. 9. Здесь приведены электронные конфигурации, основные термы и данные о спиновых и магнитных моментах атомов лантаноидов и актиноидов. Гадолиний, лютеций, кюрий и лоуренсий, обладающие внешними электронными конфигурациями s p d s-, идентичными с электронными конфигурациями скандия, иттрия, лантана и актиния, должны размещаться в III группе. Европий, иттербий, америций и нобелий имеют одинаковое строение внешних оболочек со щелочноземельными металлами поэтому должны находиться вместе с ними во второй группе. [c.40]


    Подгруппа скандия. В побочную подгруппу третьей группы входят элементы скандий, иттрий, лантан и актиний. Их атомы содержат по два электрона в наружном электронном слое и по 9 электронов в следующем за ним слое строение этих двух электронных слоев можно выразить формулой (я——1)р (га—Каждый из этих элементов открывает собой соответствующую декаду -элементов. Некоторые их свойства приведены в табл. 36. Степень окисленности элементов подгруппы скандия в большинстве их соединений равна -ЬЗ. [c.632]

    Актиноиды. К семейству актиноидов принадлежат четырнадцать элементов, следующих в периодической системе после актиния (см. табл. 21.6). Как и в случае лантаноидов, у элементов семейства актиноидов происходит заполнение третьей снаружи электронной оболочки (подоболочки 5/) строение же внешней и, как правило, предшествующей электронных оболочек остается- [c.501]

    В главе VI уже указывалось, что актиниды рассматриваются как аналоги лантанидов. Строение атома актинидов характеризуется достройкой слоя 5/ (у лантанидов достраивается слой 4/). Современные работы по изучению спектров поглощения этих элементов подтверждают эту аналогию. Однако более низкие значения энергии связи 5 f-электронов по сравнению с энергией связи 4 f-электронов обусловливают и определенные различия в свойствах лантанидов и актинидов, проявляющиеся, в частности, в появлении высших (выше 4) валентных состояний и в большей их устойчивости. Для урана, плутония, нептуния и америция характерна высшая валентность 6, тогда как следующие за америцием кюрий и берклий не проявляют валентности выше 4 для калифорния известна только валентность 3, так же как н для актиния [624]. [c.349]

    Заполнение 4/ -оболочки оказывает весьма существенное влияние на строение электронных оболочек, атомные радиусы и физико-химические свойства металлов, следующих за лантаноидами (гафний, тантал, рений, вольфрам и т. д.), т. е. лантаноидное сжатие проявляется и за лантаноидами. Действительно, оно приводит, например, к тому, что металлический и ионный радиусы, возрастающие от титана к цирконию, от ванадия к ниобию и от хрома к молибдену, почти не изменяются при переходе к гафнию, танталу, вольфраму. Точно так же почти не увеличиваются металлические радиусы и ионные радиусы, отвечающие высшим валентным состояниям, при переходе от элементов ряда технеций—палладий к их аналогам рению—платине соответственно. Именно лантаноидное сжатие, происходящее в результате заполнения 4/ -оболочки, приводит к сближению свойств 5d- и 4с -переходных металлов, резко отличающихся по свойствам от более легких Зй-переходных металлов. Оно проявляется и на теплотах образования ионных соединений этих металлов и других химических характеристиках (см. главу II). Лантаноидное сжатие, а также заполнение 5й -оболочки, заканчивающееся у платины—золота, приводит к дополнительному сжатию внешних оболочек у последующих элементов ряда золото—радон, что отражается на возрастании ионизационных потенциалов последующих элементов. Вследствие этого потенциалы ионизации франция, радия, актиния оказываются соответственно выше потенциалов ионизации цезия, бария и лантана (см. рис. 6). В результате этого первые более тяжелые элементы оказываются менее электроположительными, чем последние. Сжатие внешних оболочек вследствие заполнения внутренних Af - и 5й -оболочек приводит к повышению энергии связи внешних электронов актиноидов по сравнению с их аналогами — лантаноидами. На это указывают данные, правда, пока довольно ограниченные по их потенциалам ионизации и имеющиеся уже более подробные сведения об их атомных радиусах (см. главу III). [c.51]


    Подгруппа скандия. В побочную подгруппу третьей группы входят элементы скандий, иттрий, лантан и актиний. Их атомы содержат по два электрона в наружном электронном слое и по 9 электронов в следующем за ним слое строение этих двух электронных слоев можно выразить формулой (л — 1) 2(л— 1)й /г 2. Каждый из этих элементов открывает собой со- [c.640]

    Такое, казалось бы, необычное строение 6-го периода будет объяснено при изучении электронного строения этих элементов. Аналогичное семейство элементов находится и в 10-м ряду 7-го периода. В клетке, где находится актиний, помещен ряд элементов от тория до менделевия (последний из известных нам искусственно полученных трансурановых элементов).  [c.82]

    В 7-м периоде после заполнения 5 -оболочки у франция—радия и появления первого 6й-электрона у актиния начинается заполнение более глубокой 5/ -оболочки в последовательности из 14 актиноидов. Из общих закономерностей электронного строения можно ожидать, что далее будет продолжаться заполнение 6й -оболочки 6й-переходных металлов и 7р -оболочки аналогов таллия—радона. Таким образом, 7-й период должен состоять, так же как и шестой, из 32 элементов. [c.15]

    Состав группы. В П1Б группу Периодической системы входят скандий 8с, иттрий У и семейства элементов — лантаноиды (от лантана Ьа до лютеция 1и) и актиноиды (от актиния Ас до элемента 103, название и символ которого — лоуренсий Ьг—не являются общепринятыми). В соответствии с теорией электронного строения атома элементы 1ПБ группы являются типичными /-элементами (см. Приложение 2). [c.405]

    Все актиниды, за исключением актиния, характеризуются заполнением уровня 5/ в электронной оболочке, что определяет подобие их физико-химических свойств. Кроме системы и—51 и отдельных сведений о силицидах тория, нептуния и плутония, никаких данных о системах, образованных элементами 5/ с кремнием, не имеется. Это лишает возможности указать общие закономерности, имеющие здесь место. Большие и сравнительно близкие по величине радиусы атомов таких элементов при металлической и ковалентной связи [620] должны определять сложность строения диаграмм состояния силицидных систем, особенно в областях, бедных кремнием. Диаграмма состояния системы и— 51 является примером. В то же время области, богатые кремнием, должны иметь простое строение, так как структура силицидов в указанных системах определяется прежде всего типом укладки металлических атомов. Это положение также подтверждается имеющимися экспериментальными данными. [c.214]

    Строение валентного уровня одинаково у лантана и у лютеция (5й/ б52), для остальных элементов возможно, в принципе, участие электронов /-подуровня в образовании химических связей. Этим объясняется разнообразие степеней окисления у некоторых лантаноидов, хотя преобладающая степень окисления ( + 111). У элементов седьмого периода — актиния и лоуренсия (резерфордия) валентные электронные уровни одинаковы (6 75 ) для всех остальных элементов возможно участие электронов /-подуровня в образовании химических связей. Отсюда вытекает возможность проявления этими элементами нескольких степеней окисления, однако групповая степень окисления ( + 111) остается характерной для всех элементов. [c.231]

    Электронное строение/-переходных металлов (см. табл. 3 и 9) характеризуется тем, что их ионы имеют внешнюю оболочку с ортогональным секстетом р-орбиталей. Над этой оболочкой у свободных атомов находятся два электрона на -уровне, а у лантана, гадолиния, лютеция, актиния, протактиния, урана, нептуния, кюрия, берклия и лоуренсия — еще один электрон на -уровне. Торий имеет четыре внешних валентных электрона ( 5 ). Под оболочкой р у лантаноидов п актиноидов располагается [c.235]

    В табл. I показаны структуры электронных оболочек элементов от водорода до актиния. В своё время мы рассмотрим подробнее вопрос о строении электронных оболочек элементов, следующих за актинием. [c.19]

    Подгруппа П1В. По строению внешнего энергетического слоя члены этой подгруппы — 5с, У, Ьа, Ас — похожи на щелочноземельные металлы, яо отличаются от них появлением электрона в -подуровне предвнешнего слоя, энергетически близкого к -электронам внешнего слоя, поэтому устойчивая степень окисления элементов равна -ЬЗ. Радиусы атомов и ионов элементов средние между щелочноземельными металлами и элементами подгруппы галлия и увеличиваются от скандия к актинию. Сила их восстановительных свойств также является средней между щелочноземельными металлами и семейством галлия и растет от скандия к актинию. Окислительно-восстановительный потенциал отрицательнее водорода. В свободном состоянии в природе они не встречаются и не вытесняют водород из растворов его ионов. Элементы с водородом образуют гидриды, сходные по свойствам с гидридом алюминия АШз, но с более высокой ионностью связи. Склонны к реакциям комплексообразования. Гидроксиды 5с(ОН)з, (ОН)з, Ьа(ОН)з и А1(0Н)з — основания более сильные, чем гидроксид алюминия, и сила оснований в подгруппе растет сверху вниз. В природе встречаются в рудах совместно с лантаноидами и актиноидами. [c.317]

    В частности, лантаноидное сжатие приводит к усилению связи внешних электронов у последующих элементов, т. е. усилению их неметаллических свойств. В периодической системе элементов эти отклонения свойств, обусловленные лантаноидным сжатием, должны быть отражены некоторым сдвигом франция, радия, актиния и всех актиноидов относительно цезия, бария и лантаноидов. Такое уточнение таблицы представлено на рис. 12. Оно существенно, с одной стороны, для оценки строения и свойств этих тяжелых, малоисследованных элементов, а с другой — позволяет уточнить общие закономерности влияния заполнения внутренних оболочек на энергию связи внешних электронов, т. е. на характер экранирования ядра внутренними электронами. Отсюда непосредственно вытекает заключение [c.54]

    Химическое подобие лантаноидов обусловлено тем, что строение внешней электронной оболочки их атомов остается неизменным, а электроны поступают на внутреннюю глубоко лежащую 4/-оболочку. Соответственно собственные 4/-функции являются внутренними по отношению к 5с - и б5-функциям. Конечно, легкие актиноиды (до нептуния) в химическом отношении мало похожи друг на друга и на лантаноиды. Это обстоятельство может быть объяснено тем, что энергия связи с ядром первых 5/-электронов близка к энергии связи Ы- и 5-электронов. В результате они наравне с последними могут участвовать в образовании химической связи, обусловливая повышение валентности элемента при движении от актиния к элементам с более высоким порядковым номером. [c.388]

    Первыми наблюдавшимися примерами превращения элементов были а- и -распады в радиоактивных рядах урана, тория и актиния. Поскольку речь идет о превращении элементов, ясно, что при этом распаде изменяется не только строение электронных оболочек, но и (в первую очередь) строение атомных ядер. [c.45]

    По свойствам и строению электронных оболочек все трансурановые элементы вместе с актинием, торием, ураном сходны с редкоземельными элементами. В периодической системе они занимают одну клетку с актинием — отсюда их название актиниды. [c.93]

    Как указывалось в гл. 3, интенсивное исследование самых тяжелых элементов показало, что группа элементов, похожая на группу лантанидов, начинается с актиния. В этой главе будет рассмотрено строение электронных оболочек актинидных элементов и их соединений. [c.116]


    По строению атома скандий разнится от алюминия, в то время как у галлия есть сходство с ним. Ион же скандия, подобно иону алюминияр (И нонам ранее рассмотренных металлов), имеет октетный. внешний электронный слой, т. е. электронное строение атома инертного газа, ион галлия— нет. Таким образом, по строению ода с типичным металлом III группы — алюминием наиболее сходны элементы, непосредствен но следующие в периодической таблице за щелочноземельными металлами скандий, иттрий, лантан и актиний. Они относятся к алюминик> так же, как щелочноземельные металлы к магнию. [c.476]

    ПВ—У1В). Действительно, каждому из них свойственны высшие степени окисления, отвечающ,ие номеру группы (АсгОз, ТЬОг, РааОб, иОа). Синтезированные тяжелые элементы (Ыр, Ри и др.) называли трансурановыми и выносили за пределы графической формы периодической системы (подобно лантаноидам). Это выглядело несколько искусственным, так как не было обосновано с точки зрения электронного строения атома. Было очевидно, что в 7-м периоде должно сущ,ествовать семейство из 14 5/-элементов, подобное семейству лантаноидов, однако не было ясно, с какого именно элемента происходит заполнение 5/-оболочки. В 1942 г. Г. Сиборг высказал актиноидную гипотезу, согласно которой заполнение 5/-оболочки возможно уже у элементов, следующих за актинием (начиная с тория — № 90). [c.433]

    Актин, открытый Штраубом в 1942 г., экстрагируется водой из мышц после извлечения из них миозина 0,6 М раствором КС1 и последующей обработки ацетоном. Этот белок может существовать в двух формах, резко отличающихся гю своим физико-химическим свойствам — глобулярной (Г-актин) и фибриллярной (Ф-актин), тонкое строение которых хорошо видно на электронных микрофотографиях, полученных с помощью электронного микроскопа (см. рис. 4, стр. 17). Считается, что фибриллы полимеризованного актина получаются не путем развертывания (разматывания) глобул Г-актина, а в результате их ассоциации в длинные цепочки. [c.417]

    Кристаллические структуры актиноидов (см. табл. 39) также тесно связаны с особенностями их электронного строения. Актиний с внешней оболочкой свободного атома s p d s , теряя три валентных электрона, в металлическом состоянии образует ионы Ас с внешней оболочкой р . В результате взаимодействия с электронным газом эти ионы сближаются, но при низких температурах их р-орбитали не перекрываются и вследствие нсевдосферической симметрии ионов упаковываются в плотную гранецентрированную решетку с небольшой тетрагональностью. При повышении температуры вследствие развития р-орбиталей может возникнуть обменное взаимодействие, результатом чего может быть появление объемноцентрированной кубической Р-модификации. Торий имеет внешнюю конфигурацию p d s и в металлическом состоянии четырехвалентен. Его ионы (Th ) имеют внешнюю ортогональную р -оболочку. При низких температурах при сближении ионов перекрытия р-орбиталей не происходит, ионы ведут себя как псевдосферические и в результате ненаправленного взаимодействия с электронным газом упаковываются в плотную кубическую структуру а-тория. С повышением температуры происходит увеличение энергии электронов р -оболочки, р-орбитали вытягиваются и перекрываются, начиная с температуры 1690°. Выше этой температуры возникают ортогонально направленные обменные связи, в результате чего появляется объемноцентрированная кубическая структура р-тория, устойчивая до температуры плавления. Протактиний в связи с наличием внешней оболочки у его иона и устойчивым валентным состоянием Ра , обусловливающим более высокую электронную концентрацию Ъэл1атом), может иметь подобно ванадию, ниобию и танталу и по тем же причинам объемноцентрированную кубическую структуру. Фактически было найдено, что при 20° протактиний имеет ОН, тетрагональную решетку. Тетрагональность может быть обусловлена загрязнениями образца. [c.239]

    Из четвертой серии переходных элементов известен лишь один элемент — актиний (89), электронное строение которого аиалогичгю строению лантана (6й 75 ). [c.629]

    Элементы скандий S , иттрий Y, лантан La и актиний Ас составляют 1ПБ группу Периодической системы Д. И. Менделеева. Строение валенуного электронного уровня атомов этих элементов описывается формулой (п—l)d ns , отсюда вытекает характерная степень окисления ( + 111). Значения электроотрицательности элементов 111Б группы невелики, что объясняет почти полное преобладание для них металлических свойств, особенно для La и Ас. [c.230]

    Атомы скандия, иттрия, лантата и актиния имеют на внешнем энергетическом уровне по два 5-электрока, а на предпоследнем — один -электрон п — )с1 п5 . В соответствии с таким электроиным строением наиболее характерной степенью окисления скандия, иттрия, лантана и актиния в соединениях будет -1-3. [c.258]

    Характер окислительно-восстановительных состояний химических элементов тесно связан с электронной конфигурацией> их атомов. В табл. 4 представлено строение электронных оболочек нейтральных атомов элементов в газообразном состоянии от актиния до лауренсия включительно, полученное частично из спектроскопических данных, а также электронных структур в металлическом состоянии. [c.14]

    Как указано в табл. 6, четырнадцать 4/-элекТроноЕ добавляются в группе лантанидов, начиная с церия (2 = 58) и кончая лютецием (2 = 71) а в группе актинидов четырнадцать 5/ электронов также добавляются, начиная с тория (2 = 90) и кончая лоуренсием (2=103). В случае актиния, тория, урана и америция сведения строении оболочек были получены из анализа сиектро скопических данных, полученных при измерении эмиссионных линий нейтральных и заряженных газообразных атомов. Представление о строении оболочек протакти- [c.117]

    Электронные конфигурации. Почти все физические и химические свойства редкоземельных элементов находят логическое объяснение в строении их электронных конфигураций. Скандий, иттрий, лантан и актиний первые члены соответственно первого, второго, третьего и четвертого переходных рядов элементов. Другими словами, для каждого из этих элементов характерно начало внутренней надстройки, при которой устойчивая восьмиэлек- [c.32]

    В последнее время считают, что три элемента, стояпще за актинием, т. е. элементы с порядковыми номерами от 90 до 92, не соответствуют по своему строению трем первым элементам семейства лантанидов, а скорее построены аналогично элементам IV—VI побочных подгрупп. Типичная для лантанидов конфигурация электронов проявляется в семействе актинидов, по-видимому, только после нептуния 2=93). Возможно, что четвертый и следующие элементы семейства актинидов по своему строению похожи на четвертый и следующие элементы семейства лантанидов. (Подробнее об этом см. т. И, гл. 14. Ср. также табл. II приложения.) Если эти предположения, установленные на основании данных магнитных измерений, правильны, то элементы торий, протактиний и уран следует поместить в побочные подгруппы IV—VI групп не только по их химическому поведению, но и на основании строения их атомов. [c.22]

    Развитие учения об атомах не прекратилось на строении электронных оболочек. Оно постепенно охватило и строение атомных ядер, которые оказались весьма сложными системами. Толчком к развитию учения о строении атомных ядер было открытие в 1896 г. Беккерелем явления радиоактивности, заключающегося в способности атомов урана самопроизвольно испускать лучи, составными частями которых были поток ядер атомов гелия (а-лучи), поток электронов (р-лучи), поток фотонов (у-лучя). Явление радиоактивности было обнаружено у тория, а также у некоторых вновь открытых элементов (полония, радия, актиния и протактиния). Это явление сопровождается непрерывным выделением тепла (1 г радия выделяет 136 кал1час). В отличие от химических реакций, на процесс радиоактивности не влияют ни температура, ни давление, ни химические реагенты. [c.18]

    Мы отнесли проблему молекулярного строения мышцы в конец, потому что эта область исследования начала разрабатываться сравнительно недавно, лишь после того, как изобретение электронного микроскопа расширило границы человеческого зрения до мира молекул. Первыми в этом направлении стали работать Холл, Джекус и Шмитт. Позднее к ним присоединились Г. Росса, автор этой статьи и Р. Быков. Исследования показали, что образование нитей из глобул актина происходит в две стадии. Сначала примерно 20 глобул соединяются в слегка удлиненную частицу, около 300 ангстремвдлину и 100 — в ширину. Затем такие частицы соединяются концами и образуют нити. На электронномикроскопических фотографиях обнаруживается, что нити имеют сильную склонность располагаться друг подле друга, так что отдельные частицы соседних нитей лежат, образуя правильные поперечные ряды. Таким образом, получаются как бы перекрещенные нити, и возникает правильная структура, напоминающая структуру кристалла. [c.233]


Смотреть страницы где упоминается термин Актиний электронное строение: [c.91]    [c.505]    [c.505]    [c.88]    [c.91]    [c.91]    [c.161]    [c.7]    [c.640]    [c.284]    [c.284]    [c.400]    [c.201]   
Основы общей химии Том 2 Издание 3 (1973) -- [ c.73 , c.227 ]




ПОИСК





Смотрите так же термины и статьи:

Актин

Актиний

Электронное строение

электронами электронное строение



© 2025 chem21.info Реклама на сайте