Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Алюминий электронное строение

    С атомом какого инертного газа и с ионом какого галогена сходна по электронному строению частица, возникающая в результате удаления из атома алюминия валентных электронов  [c.122]

    Фосфор, мышьяк или сурьма (имеющие электронное строение внешнего энергетического уровня s pЗ и проявляющие валентность 5), будучи введенными в кристаллические решетки германия или олова (электронное строение внешнего уровня 5 р валентность 4) ведут себя как донорные примеси, т. е. отдают электроны и создают проводимость п-типа. Если же в германий или кремний ввести бор, алюминий, галлий или индий (электронное строение внешнего уровня 5 р, валентность 3), то атомы примеси захватывают четвертый электрон и полупроводник обнаруживает проводимость р-типа. [c.186]


    Далее, начиная с алюминия (2= 13), происходит заполнение подуровня Ър. Оно заканчивается у благородного газа аргона (2 = 18), электронное строение которого выражается схемой [c.92]

    Многочисленные известные людям металлы химики делят на четыре типа в соответствии с электронным строением металлы (щелочные, щелочноземельные, магний и бериллий), р-металлы (алюминий, галлий, индий, таллий, олово, свинец, сурьма, висмут, полоний), ё- и / металлы (которые иногда объединяют термином переходные металлы ). А какие металлы относятся к черным, цветным и малым  [c.210]

    Если сопоставить электронное строение атомов, то можно заметить, что структура внешних энергетических уровней периодически повторяется (сравним литий и натрий Зл бериллий 2. и магний 3 , бор 25 2р и алюминий и т. д.). Такая [c.52]

    Если сопоставить электронное строение атомов, то можно заметить, что структура внешних энергетических уровней периодически повторяется (сравним литий 2 и натрий 3 бериллий 2 и магний 3 , бор 2 2p и алюминий 3 3р и т. д.). Такая закономерность будет соблюдаться и в последующих периодах. Именно этим объясняется периодическая повторяемость свойств элементов в периодах. В этом сущность и причина периодичности, обнаруженной Д. И. Менделеевым, который не располагал сведениями о строении атома. Итак, теория строения атома подтвердила истинность менделеевского открытия, подвела под него мощную базу. [c.44]

    Неметалличность бора отвечает его положению в периодической системе — между бериллием и углеродом и по диагонали — рядом с кремнием. Поэтому у бора проявляется сходство не Только с алюминием, но и с кремнием. Из его положения следует также, что соединения бора с азотом должны быть по электронному строению и свойствам похожи на углерод. [c.327]

    С другой стороны, с увеличением температуры подвижность газовых атомов быстро растет и уже при 600 °С расстояние, которое они могут пройти за 1 час, составляет (т >) 7 400 А. По-видимому, из-за ограниченного числа экспериментальных исследований преждевременно говорить о закономерностях диффузии инертных газов, в том числе и гелия, в металлах. Однако, анализируя полученные результаты и имеющиеся в литературе данные [85, 86], можно полагать, что диффузия инертных газов в чистых металлах характеризуется более низкими коэффициентами диффузии по сравнению с самодиффузией. При этом энергия активации диффузии гелия в бериллии, так же как диффузия гелия и аргона в алюминии и магнии, выше энергии активации само-диффузии этих металлов. Указанные различия в параметрах самодиффузии и диффузии атомов инертных газов могут быть обусловлены как различием электронного строения и атомных размеров, так и спецификой механизма диффузии. [c.37]

    Ион алюминия в основном состоянии имеет электронное строение Ь 2х 2р , и орбитали его валентной оболочки при изображении по методу орбиталей-ячеек выглядят следующим образом  [c.414]

    Какие особенности электронного строения соединений приводят к тому, что трифторид бора кипит при -100 °С, а трифторид алюминия - при +1300°С  [c.332]

    Сейчас построим электронные конфигурации атомов от натрия до кальция включительно. Заметим, что в каждом случае расположение внутренних электронов совпадает с конфигурацией неона, поэтому для краткости будем обозначать его как (Ке). Тогда получаем натрий, (Ые)35 магний, (Ке)35 алюминий, (Ые)35 3р ,. .. и так вплоть до аргона, (Ме)35 3р . Внутренние электроны калия и кальция расположены так же, как в аргоне, и их конфигурации имеют вид (Аг)45 и (Аг)45 соответственно. Теперь ясно просматривается связь между химическим сходством различных элементов, прекрасно выраженным Менделеевым в Периодической системе, и сходством их электронного строения. В частности, можно заметить, что щелочные металлы имеют один неспаренный электрон на внешней 5-орбитали, а щелочноземельные металлы — два электрона на внешней 5-орбитали. В то же время для благородных газов характерно полное заполнение орбиталей 5- и р-типа. [c.54]


    Свойства алюминия и его соединений. Алюминий — элемент III группы Периодической системы Д. И. Менделеева. Электронное строение атома в основном состоянии— s 2s 2p 3s 3p . Устойчивой является степень окисления + 3, однако известны соединения алюминия, в степени окисления +1, которые образуются при высоких температурах. [c.50]

    Неметалличность бора отвечает его положению в периодической системе элементов - между бериллием и углеродом и по диагонали с кремнием. Поэтому у бора проявляется сходство не только с алюминием, но и с кремнием. Из его положения следует также, что соединение бора с азотом должно быть по электронному строению и свойствам похоже на углерод - суммарное число валентных электронов у В и N равно 8, столько же электронов в двух агамах С. [c.343]

    Главы 6,7 посвящены следующим базисным группам тугоплавких неметаллических соединений — оксидам алюминия и кремния, для каждой из которых последовательно рассмотрены вопросы электронного строения и свойств кристаллических и аморфных состояний, модели фазовых переходов, изложены результаты исследований по воздействию на свойства оксидов примесей, дефектов, поверхностных состояний, приводятся сведения по принципам моделирования и обсуждаются конкретные результаты изучения межфазных границ и межзеренных областей. Анализ данных квантово-химических вычислений проведен в тесной взаимосвязи с экспериментальными сведениями по свойствам соответствующих материалов. [c.4]

    С атомом какою благородного газа и с ионом какого галогена сходна по электронному строению частица, образующаяся при отрыве от атома алюминия его валентных электронов  [c.256]

    Другая особенность алюминия ого строения молекулы Al Ift (как и его аналогов — галлия, ин-дня и таллия) по сравнению с бором заключается в существовании свободных /-нодуроипей во внешнем электронном слое его атома. Благодаря этому координационное число алюминия в его соединениях может равняться не только четырем, как у бора, но и шести. [c.635]

    Используя представления о кайносимметрии, можно выделить более тонкий вид электронной аналогии, так называемую слоевую аналогию (в дополнение к групповой и типовой аналогии). Слоевыми аналогами называют элементы, которые являются типовыми аналогами, но не имеют внешних или предвнешних кайносимметричных электронов. К таким аналогам относятся, например, в IA-группе К, Rb, s и Fr, а Li и Na не являются слоевыми аналогами с остальными щелочными металлами, поскольку у Li присутствует внешняя кайносимметричная 2р-оболочка (вакантная), а у Na кайносимметрнчная заполненная 2р-оболочка является предвнеш-ней. В ПА-группе слоевыми аналогами являются щелочно-земельные металлы (подгруппа кальция), а в П1А-группе — элементы подгруппы галлия и т. д. С точки зрения электронного строения слоевые аналоги являются между собой полными электронными аналогами. Поэтому рассматривать химические свойства элементов группы мы будет в такой последовательности первый типический элемент, второй типический элемент, остальные элементы главной подгруппы, элементы побочной подгруппы. Например, в И1 группе отдельно рассматриваются бор, алюминий, подгруппа галлия, подгруппа скандия в V группе — азот, фосфор, подгруппа мышьяка, подгруппа ванадия п т. п. [c.15]

    По строению атома скандий разнится от алюминия, в то время как у галлия есть сходство с ним. Ион же скандия, подобно иону алюминия (и ионам ранее рассмотренных металлов), имеет октет-ный внешний электронный слой, т. е. электронное строение атома инертного газа, а ион галлия — нет. Таким образом, по строению [c.664]

    Нитриды бора, алюминия и галлия относятся к соединениям типа которые в последнее время находят широкое применение в качестве полупроводниковых материалов при высоких температурах. Нитриды бора и алюминия — хороший огнеупорный материал. Поэтому исследование процесса испарения этих соединений необходимо в первую очередь для выяснения их устойчивости в вакууме при высоких температурах. Кроме того, сопоставление полученных термодинамических данных в ряду от бора к галлию позволяет проследить характер изменения химической связи и электронного строения этих нитридов. [c.151]

    НЕКОТОРЫЕ ФИЗИЧЕСКИЕ СВОЙСТВА И ЭЛЕКТРОННОЕ СТРОЕНИЕ НИТРИДА АЛЮМИНИЯ [c.168]

    По строению атома скандий разнится от алюминия, в то время как у галлия есть сходство с ним. Ион же скандия, подобно иону алюминияр (И нонам ранее рассмотренных металлов), имеет октетный. внешний электронный слой, т. е. электронное строение атома инертного газа, ион галлия— нет. Таким образом, по строению ода с типичным металлом III группы — алюминием наиболее сходны элементы, непосредствен но следующие в периодической таблице за щелочноземельными металлами скандий, иттрий, лантан и актиний. Они относятся к алюминик> так же, как щелочноземельные металлы к магнию. [c.476]

    Использование в качестве признаков в алгоритмах распознавания орбитальных параметров в некотором смысле сближает статистические методы с методами квантовой механики и квантовой химии, поскольку те же параметры применяются для расчетов электронной структуры твердых тел. Мыслимы и последующие шаги в этом направлении. Так, можно было бы описывать структуры многокомпонентных катализаторов в духе метода кластерных компонентов. Этот подход основан на записи состава катализаторов с помощью квазихимических формул, знакомых по гл. I. В качестве признаков многокомпонентной системы целесообразно использовать усредненные значения параметров электронной структуры кластеров, соответствующих различным типам узлов решетки. Для оксида алюминия, например, согласно формуле (1.3), это будут кластеры АЮ4, АЮб и т. д. Параметры электронного строения фрагментов катализатора можно рассчитывать теми или иными методами квантовой химии. Усреднение по кластерным компонентам целого ряда электронных характеристик локальных плотностей состояний, их моментов, атомных вкладов в полную энергию и т. д. наполнилось бы при этом реальным физическим содержанием, поскольку они являются уже в строгом смысле аддитивными. [c.156]

    При подборе условий полимеризации необходимо было исключить или, во всяком случае, свести к минимуму вероятность протекания побочных реакций. На основании высказанных выше общих соображений относительно особенностей электронного строения ацетиленовых углеводородов можно было предполагать, что полимеризация ацетилена и его производных легче всего должна протекать по ионному механизму, в особенности в присутствии комплексных катализаторов. Действительно, как было показано Натта с сотр., ацетилен полимеризуется в мягких условиях на комплексных металлоорганических стереоспецифических катализаторах. При использовании катализаторов, образованных при взаимодействии алкилов алюминия и галогенидов переходных металлов, наряду с маслообразными продуктами был впервые получен твердый порошкообразный черный полиацетилен. По данным рентгенографического исследования, этот полимер имел аморфную структуру. С каталитической системой А1 (С2Н5)з-ЬТ1С14 образовывался поли-меризат, содержащий 20% низкомолекулярного полимера и 80% твердого, нерастворимого в обычных растворителях и неплавкого аморфного полимера черного цвета. При замене в каталитической системе галогенида переходного металла на различные алкоголя-ты можно получить кристаллический полиацетилен с высокой конверсией (98,5%). Полимер образуется в виде черных чешуек с металлическим блеском, нерастворимых в органических растворителях. [c.51]


    В ионных соединениях валентность элемента можно определить как число электронов, отдаваемых или захватываемых при образовании ионов с внешней электронной оболочкой инертного газа. Пусть, например, алюминий и кислород образуют ионное соединение — окись алюминия. Атомы алюминия (III группа Периодической системы элементов) в нейтральном состоянии содержат во внешней электронной оболочке три электрона. Следующая, нижележащая оболочка тождественна внешней восьмиэлектронной оболочке неона. Следовательно, потеря трех электронов атомом алюминия приведет к тому, что оставшаяся его часть приобретет электронное строение неона. У атома кислорода — элемента VI группы Периодической системы — во внешней оболочке находится шесть электронов, т. е. для полной застройки восьмиэлектронной оболочки неона не хватает двух элементов. Таким образом, возникают ионы А1 + и Окись алюминия, очевидно, электроней- [c.299]

    Отличие электронного строения атомов бора и алюминия от строения др5ггих элементов подгруппы. Преобладание ковалентного характера связей в соединениях бора и двойственный ионно-ковалентный характер связей алюминия. Физические и химические свойства элементного бора. Термодинамика образования бинарных соединений бора, их строение и химические свойства. [c.308]

    Можно совместить подгруппы металлов, обладающих одинаковым числом внешних, относительно слабо связанных электронов на заполняющихся 5-, й- и /-нодоболочках, т. е. й- и /-переходных металлов и элементов главных подгрупп с заполняющимися р -оболочками, в основном (за исключением алюминия, таллия и свинца) полупроводниковых и неметаллических элементов. Такая заключительная операция приводит к классической таблице Менделеева (табл. И), но уже не с двумя, а с тремя подгруппами, возникающими в результате размещения в 6-м и 7-м периодах элементов с заполняющимися /-подоболочками, которым, как и переходным металлам с заполняющимися -подоболочками в обычной таблице, необходимо дать определенные смещения для отражения специфических особенностей их электронного строения и свойств. Такое размещение лантаноидов и актиноидов без нарушения последовательности возрастания атомных номеров и с распределением их по группам в соответствии с периодичностью заполнения электронных оболочек точно отвечает периодическому закону Менделеева. [c.43]


Смотреть страницы где упоминается термин Алюминий электронное строение: [c.375]    [c.212]    [c.346]    [c.171]    [c.212]    [c.12]    [c.197]    [c.241]    [c.197]    [c.50]    [c.96]    [c.62]   
Основы общей химии Том 2 Издание 3 (1973) -- [ c.9 , c.76 , c.227 ]




ПОИСК





Смотрите так же термины и статьи:

Алюминий строение

Электронное строение

электронами электронное строение



© 2025 chem21.info Реклама на сайте