Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Аргон электронное строение

Рис. 11.2. Вещества, в которых каждый атом имеет электронное строение благородного газа. Каждая черточка означает пару валентных электронов. a + и кремний имеют электронное строение аргона с 18 электронами. Атомы Н удерживают только два электрона (электронное строение гелия). Остальные изображенные здесь атомы имеют по 10 электронов (электронное строение неона). Рис. 11.2. Вещества, в которых каждый атом имеет электронное строение благородного газа. Каждая черточка означает пару валентных электронов. a + и кремний имеют электронное строение аргона с 18 электронами. Атомы Н удерживают только два электрона (электронное строение гелия). Остальные изображенные здесь атомы имеют по 10 электронов (электронное строение неона).

    У атома неона (и гелия) нет неспаренных электронов и свободных ячеек. Поэтому он не образует соединений с другими атомами его валентность равна,нулю. Электронное строение внешнего слоя атома аргона выражается схемой [c.82]

    Далее, начиная с алюминия (2= 13), происходит заполнение подуровня Ър. Оно заканчивается у благородного газа аргона (2 = 18), электронное строение которого выражается схемой [c.92]

    Естественно, что фундаментальный закон химии, открытый Д. И. Менделеевым, — периодический закон—должен найти себе объяснение в закономерности строения атоМов, вскрываемой квантовой механикой. Периодичность в изменении химических свойств элементов при возрастании заряда ядра определяется периодическим повторением у определенных атомов строения внешних электронных оболочек. Легко заметить, что число электронов в последовательности от 5 до ближайшей конфигурации (первый период) или (остальные периоды) равно 2, 8, 8, 18, 32 (табл. 3), т. е. совпадает с числом элементов в периодах системы Д. И. Менделеева и объясняет, почему именно столько элементов содержится в данном периоде. Период начинается элементом, у которого впервые в системе возникает новый квантовый слой, содержащий один л-электрон (щелочной металл), и оканчивается элементом, у которого впервые в этом квантовом слое достраивается шестью электронами -подоболочка (благородные газы). Очевидно, что номер периода )авен главному квантовому числу электронов внешнего слоя. Например, атом натрия, открывающий третий период, и атом аргона, заканчивающий его, имеют конфигурации К 13л и К соответст- [c.60]

    После заполнения Зd-пoдypoвня (п = 3, / = 2) электроны, в соответствии со вторым правилом Клечковского, занимают подуровень 4р (п = 4, / = 1), возобновляя тем самым построение Л -слоя. Этот процесс начинается у атома галлия (2 = 31) и заканчивается у атома криптона Е = 36), электронное строение которого выражается формулой 1з 2з 2р 38 Зр Зс °4з Ар . Как и атомы предшествующих благородных газов — неона и аргона, атом криптона характеризуется структурой внешней электронной оболочки пз пр , где тг — главное квантовое число (неон — 2з 2р , аргон — 3в23р , криптон — Аз Ар ). [c.68]

    С другой стороны, с увеличением температуры подвижность газовых атомов быстро растет и уже при 600 °С расстояние, которое они могут пройти за 1 час, составляет (т >) 7 400 А. По-видимому, из-за ограниченного числа экспериментальных исследований преждевременно говорить о закономерностях диффузии инертных газов, в том числе и гелия, в металлах. Однако, анализируя полученные результаты и имеющиеся в литературе данные [85, 86], можно полагать, что диффузия инертных газов в чистых металлах характеризуется более низкими коэффициентами диффузии по сравнению с самодиффузией. При этом энергия активации диффузии гелия в бериллии, так же как диффузия гелия и аргона в алюминии и магнии, выше энергии активации само-диффузии этих металлов. Указанные различия в параметрах самодиффузии и диффузии атомов инертных газов могут быть обусловлены как различием электронного строения и атомных размеров, так и спецификой механизма диффузии. [c.37]

    Сейчас построим электронные конфигурации атомов от натрия до кальция включительно. Заметим, что в каждом случае расположение внутренних электронов совпадает с конфигурацией неона, поэтому для краткости будем обозначать его как (Ке). Тогда получаем натрий, (Ые)35 магний, (Ке)35 алюминий, (Ые)35 3р ,. .. и так вплоть до аргона, (Ме)35 3р . Внутренние электроны калия и кальция расположены так же, как в аргоне, и их конфигурации имеют вид (Аг)45 и (Аг)45 соответственно. Теперь ясно просматривается связь между химическим сходством различных элементов, прекрасно выраженным Менделеевым в Периодической системе, и сходством их электронного строения. В частности, можно заметить, что щелочные металлы имеют один неспаренный электрон на внешней 5-орбитали, а щелочноземельные металлы — два электрона на внешней 5-орбитали. В то же время для благородных газов характерно полное заполнение орбиталей 5- и р-типа. [c.54]


    Обобществление фосфором с окружающими его атомами 10 электронов, а серой с ее окружением 12 электронов, очевидно, не согласуется с правилом октета. Причину его нарушения позволяет понять теория строения атома. В третьем периоде, к которому принадлежат фосфор и сера, благородным газом является аргон. В электронной оболочке аргона за- [c.475]

    После заполнения З -подуровня (я — 3, I — 2) электроны, в соответствии со вторым правилом Клечковского, занимают подуровень 4р (п = 4, I I), возобновляя тем самым построение Ы-слоя. Этот процесс начинается у атома галлия (2 = 31) и заканчивается у атома криптона (2 = 36), электронное строение которого выражается формулой ls22s 2p 3s 3d °4s 4p . Как и атомы предшествующих благородных газов — неона и аргона, — атом криптона характеризуется структурой внешнего электронного слоя п5 пр , где п — главное квантовое число (неон — 25 2р , аргон — Зх Зр , криптон —45Чр ). [c.91]

    Для натрия характерно образование устойчивого иона Ыа , обладающего электронным строением предшествующего ему благородного газа неона. У иона же хлора строение внешней оболочки соответствует конфигурации благородного газа аргона. [c.72]

    Продолжим рассмотрение электронного строения атомов. Мы остановились на атоме аргона, у которого целиком заполнены 3 -и Зр-подуровни, но остаются незанятыми все орбитали Зй-под-уровня. Однако у следующих за аргоном элементов — калия (7 = 19) и кальция (2 = 20)—заполнение третьего электронного слоя временно прекращается и начинает формироваться -подуровень четвертого слоя электронное строение атома калия выражается формулой 15 25 2р 3 2 3р 45, атома кальция— 152 25 2р 3 2 3р 452 и следующими схемами  [c.89]

    По строению внешнего электронного слоя инертные элементы можно разделить на две группы. К первой относят элементы, атомы которых имеют вакантные -подуровни на внешнем уровне, т. е. аргон, криптон и радон. Элементы второй группы — гелий и неон — не имеют вакантных -подуровней на внешнем электронном уровне атомов. Поэтому ионизационные потенциалы первой группы инертных элементов гораздо ниже, чем второй (см. табл. 30). [c.403]

    Продолжим рассмотрение электронного строения атомов. Мы остановились на атоме аргона, у которого целиком заполнены о5- и Зр-подуровни, но остаются незанятыми все орбитали Зй-под-уровня. Одиако у следующих за аргоном элементов — калия (2=19) и кальция (2 = 20) — заполнение третьего электронного слоя временно прекращается и начинает формироваться -подуровень четвертого слоя электронное строение атома ка- [c.88]

    При расчетах потенциальных энергий Ф взаимодействия молекул с базисной гранью графита принимается также, что напряжение электростатического поля над поверхностью графита равно нулю или близко к нулю. С этим предположением согласуется наблюдаемая близость экспериментальных значений теплот адсорбции на графитированных термических сажах при низком (нулевом) заполнении поверхности для веществ с близкой энергией дисперсионного взаимодействия, но с различным электронным строением, например для аргона (не обладает постоянными электрическими моментами) и азота (обладает значительным квадрупольным моментом), для к-пентана (электрические моменты близки к нулю) и диэтилового эфира (обладает значительным периферическим дипольным моментом) [143-145]. [c.247]

    Электронное строение атома хлора (5з 3р ) удовлетворительно объ-.ясняет также существование основной формы этого вещества. Единственная заполненная наполовину Зр-орбита может быть использована для образования одной ковалентной связи, поэтому хлор существует в виде двухатомных молекул. Наконец, у атома аргона все валентные орбиты с низкой энергией заняты электронами, и возможность образования, химических связей между атомами отсутствует. [c.545]

    Таким же образом, и даже, может быть, еще проще, можно найти основные состояния ближайших, следующих за углеродом атомов Ы, О, Р, N6. У неона 5- и р-уровни слоя п = 2 полностью заполнены, т. е. электроны не могут появиться на этих оболочках, не нарушив принципа Паули. Поэтому для следующего элемента начинается заселение уровней слоя п = 3. Это происходит точно так же, как и для слоя п = 2 в результате образуется электронная оболочка инертного газа аргона. Термы этого периода также одинаковы, т. е. электронные оболочки атомов элементов первых двух коротких периодов периодической системы имеют аналогичное строение. Опустим подробности построения электронных моделей остальных элементов периодической системы. С последовательностью заполнения энергетических уровней электронов в слоях и особенностями заполнения, например появлением побочных групп и лантаноидов, можно ознакомиться с помощью табл. А.5. В термы включен также индекс справа внизу, который указывает на суммарный орбитальный и спиновый моменты. [c.59]

    Исключения из правила Клечковского наблюдаются для элементов с полностью или наполовину заполненными с1- и /-подуровнями. Так, у Си электронной конфигурации [Аг]Зс 45 отвечает меньшая энергия, чем конфигурации [Аг]Зс 45 (символ [Аг] показывает, что строение внутренних электронных уровней такое же, как в аргоне). На Зй-поду-ровне находится 10 (во втором случае 9) электронов, а на 45-подуровне — один электрон (во втором случае 2). Первая конфигурация отвечает основному состоянию, вторая — возбужденному. [c.19]

    В основе строения атомов Fe, Со и Ni лежит электронная конфигурация аргона 2 8 8. Во внешнем же слое атомы семейства содержат по 2 валентных электрона. Отсюда типичная для этих элементов валентность +2. Это — низшая положительная валентность, которой соответствуют низшие окислы состава ЭО (закиси металлов, например FeO — закись железа). Им отвечают гидраты закиси общей формулы Э (ОН)г, например Fe(0H)2 — гидрат закиси железа. Эти гидраты имеют ясно выраженный основной характер. В образовании высших окислов участвуют электроны второго снаружи слоя. По мере повышения положительной валентности элемента характер окислов и их гидратов изменяется, что особенно ясно выражено у железа Ре(ОН)з— гидроокись, имеющая основной, отчасти амфотерный характер РеОз—кислотный окисел (железный ангидрид). [c.545]

    Если химическое взаимодействие между молекулами (или между ионами) велико, то в качестве структурных единиц жидкости иногда могут фигурировать атомные остатки, т. е. атомные ядра и прочно связанные с ними электроны внутренних оболочек. Такие жидкости могут быть расплавленными металлами они могут быть сходны с жидкими галогенидами щелочных металлов и их структура может напоминать строение жидкого аргона с той лишь разницей, что энергия взаимодействия между атомными остатками на два — три порядка больше, чем энергия связи атомов аргона. [c.99]

    Структуру кристаллов можно изучать как методом дифракции электронов, так и методом дифракции рентгеновских лучей. Электронографический метод оказался особенно полезным при изучении строения очень тонких пленок на поверхности кристаллов. Благодаря применению этого метода удалось, например, показать, что при адсорбции аргона на чистой поверхности кристалла никеля атомы аргона занимают лишь одну четвертую часть возможных положений, образуемых треугольниками никелевых атомов (на октаэдрической грани кристалла с плот- [c.71]


    С развитием представлений об электронном строении атома стало ясным, что особая химическая инертность гелия, неона, аргона и их аналогов обусловлена повышенной устойчивостью полностью укомплектованных 5- и /3-оболочек. С учетом этого и были разработаны представления о ионной (Коссель, 1916) и ковалентной (Льюис, 1916) связи. Особая устойчивость электронного октета и стремление других атомов тем или иным способом приобрести электронную конфигурацию благородного газа на долгие годы стали краеугольным камнем теорий химической связи и кристаллохимического строения (правило Юм-Розери 8—Л, критерий Музера и Пирсона и др.). Нулевая группа стала своеобразной осью периодической системы, отражающей так называемое полновалентное правило (стабильность октетной конфигурации), подобно тому как УА-группа является осью, отражающей четырехэлектронное правило. [c.397]

    Однако часто наблюдаются отклонения от правила Сиджвика. Например, совершенно устойчивый мономерный ион [Р1(ЫНз)4 + имеет ЭАН, неравный атомному номеру следующего за платиной инертного элемента родона. При вычислении эффективного атомного номера [Со(ЫНз)5С1]С12 надо учитывать строение комплексного соединения, заряд комплексного иона, атомный номер центрального атома. Атомный номер Со равен 27. Пять молекул аммиака образуют донорно-акцепторные связи за счет свободных пар электронов. Заряд комплексного иона +2. Внутрисферная хлорогруппа предоставляет для связи один электрон. Суммируя, находим, что значение эффективного атомного номера пентамминахлорокобальтихлорида равно 27+5-2+[ —2—36, т. е. соответствует атомному номеру инертного газа аргона. Для соединения триамминового типа [Со(ЫНз)зС1з] он также равен l27-f 3 2 + 3= 3 6. Таким образом, при переходе от соединений одного типа к другому эффективный атомный номер не изменяется. [c.247]

    Третий этап (1894—1910) знаменателен открытием а) аргона и гелия (В. Релей, У. Рамзай), б) электрона (Э. Вихерт, Дж Томсон), в) Х-лучей (В. Рентген) иг) радиоактивности (А. Беккерель). Первое открытие послужило стимулом существенного измекени5>. структуры таблицы Д. И. Менделеева в нее была включена нулевая группа. Открытие электрона, во-первых, повлекло за собой разработку гипотез о строении aTOTvia как некоей сложной частицы [c.50]

    Энергетический уровень 45 лежит ниже, чем уровень 2>й, который должен был бы заполняться у элемента, следующего за аргоном. Атом калия имеет строение К 1522522р 3523р 45. Аналогичные сдвиги уровней наблюдаются и в других местах системы Менделеева. Поэтому образуются последовательности элементов со сходными внешними электронными оболочками и недостроенными внутренними. [c.79]


Смотреть страницы где упоминается термин Аргон электронное строение: [c.96]    [c.67]    [c.108]    [c.33]    [c.389]    [c.483]    [c.111]    [c.483]    [c.536]    [c.96]    [c.92]    [c.62]    [c.47]    [c.79]    [c.80]    [c.212]   
Основы общей химии Том 2 Издание 3 (1973) -- [ c.76 , c.89 , c.227 ]




ПОИСК





Смотрите так же термины и статьи:

Аргон

Электронное строение

электронами электронное строение



© 2025 chem21.info Реклама на сайте