Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Атомное ядро захват нейтронов

    Применение. Бор применяют как добавку к сплавам, увеличивающую нх жаропрочность и износостойкость, бор вводят также в поверхностный слой изделий (борирование). Поскольку ядро атома бора имеет высокое сечение захвата нейтронов, бор используют для защиты от нейтронов и в регулирующих устройстаах атомных реакторов (применяют борсодержащую сталь). [c.349]

    Для исследования структуры кристаллов применяют также метод, основанный на дифракции медленных нейтронов. Рассеяние их потока происходит в результате взаимодействия с ядрами микрочастиц, образующих кристалл. Поэтому положение последних в кристаллической структуре можно определить с большой точностью вплоть до 0,0001 нм. Метод применим лишь для изучения структуры веществ, атомы которых обладают малым сечением захвата нейтронов. Известен также метод изучения структуры кристаллов, основанный на дифракции электронов. Исследуемый образец готовят в форме тончайшей пленки толщиной 10—100 нм и помещают в специальную вакуумную камеру. Точность определения положения микрочастиц в кристалле составляет порядка 0,003 нм. Методы, основанные на дифракции нейтронов и электронов, определяют положение атомных ядер в кристаллической структуре и не подвержены влиянию поляризуемости связей. Поэтому они позволяют более точно рассчитать постоянные кристаллических решеток в сравнении с величинами, определенными из рентгенограмм вещества. [c.92]


Рис. 24.5. Модели захвата нейтрона и протона атомным ядром. Рис. 24.5. Модели захвата нейтрона и протона атомным ядром.
    Стабильные и радиоактивные изотопы. В настоящее время известно около 280 стабильных изотопов, принадлежащих 81 природному элементу, и более 1500 радиоактивных изотопов, 107 при родных и синтезированных элементов. При этом у элементов с нечетными I не более двух стабильных изотопов. Число нейтронов в таких атомных ядрах, как правило, четное. Большинство элементов с четным 2 характеризуется несколькими стабильными изотопами, из которых не более двух с нечетными А. Наибольшее число изотопов имеют олово (10), ксенон (9), кадмий (8) и теллур (9). У многих элементов по 7 стабильных изотопов. Такой широкий набор стабильных изотопов у различных элементов связан со сложной зависимостью энергии связи ядра от числа протонов и нейтронов в нем. По мере изменения числа нейтронов в ядре с определенным числом протонов энергия связи и его устойчивость к различным типам распада меняются. При обогащении нейтронами ядра излуч-ают электроны, т. е, становятся р -активными с превращением нейтрона в ядре в протон. При обеднении ядер нейтронами наблюдается электронный захват или р+-активность с превращением протона в ядре в нейтрон. У тя- [c.50]

    Как уже было указано, атомное ядро захватив нейтрон, в результате Р-излучений превращается сначала в нептуний, а затем в плутоний. Плуто-ний — довольно устойчивый радиоактивный элемент (период полураспада 24 000 лет). Под влиянием медленных нейтронов он делится подобно следовательно, с успехом заменяет его. [c.68]

    В 1934 г. Л. Сциллардом и Т. Чалмерсом обнаруживаются своеобразные химические эффекты при процессах захвата атомными ядрами медленных нейтронов. В дальнейшем такие эффекты обнаруживаются при изомерных переходах, р-распаде и /С-захвате. [c.15]

    Ядро атома бора имеет высокое сечение захвата нейтронов, поэтому бор используют для защиты от нейтронов и в регулирующих устройствах атомных реакторов (применяют борсодержащую сталь). [c.335]

    СЕЧЕНИЕ АКТИВАЦИИ —величина, показывающая вероятность образования радиоактивных изотопов при взаимодействии ядерных частиц (нейтронов, протонов, а-частиц) с атомными ядрами. Обозначается буквой а. Практически наиболее важны реакции радиационного захвата нейтронов и соответствующая им величина — сечение захвата нейтронов эти реакции приводят к образованию радиоактивного изотопа элемента, массовое число которого на единицу больше, чем у изотопа, претерпевшего превращение. Во многих случаях при захвате нейтронов тем же самым изотопом наблюдается образование ядерных изомеров, отличающихся друг от друга периодами полураспада. [c.226]

    Первая реакция может проходить как в атомном ядре, так и со свободным нейтроном, так как масса последнего (1,0086650 а.е.м.) больше суммы масс протона (1,0072764 а.е.м.) и электрона (0,0005486 а.е.м.). В свободном состоянии нейтрон испытывает р-распад с периодом полураспада (см. ниже) 7=11,7 мин. А вторая реакция возможна только внутри ядра и за счет его энергии, так как масса протона меньше массы нейтрона и позитрона. Третьим видом р-распада является захват ядром электрона из электронной оболочки своего атома ( -захват, или /(-захват). Во всех трех случаях р-распад сопровождается испусканием нейтрино (V) или антинейтрино (у). В результате р"-распада количество протонов в ядре возрастает и его заряд повышается на единицу. Например  [c.576]


    Поэтому ядерные реакции захвата нейтронов могут быть осуществлены во всех частях звезды и с нейтронами любых энергий. Эти реакции приводят к образованию тяжелых элементов с атомной массой более 60, в том числе всех известных и сейчас существующих на Земле р-активных естественных радиоактивных изотопов. Прямым доказательством протекания процесса захвата нейтронов в звездах служат астрофизические и спектроскопические данные о нахождении в некоторых звездах (состояние которых отвечает этой стадии эволюции) изотопа элемента технеция. Распространенность химических элементов в веществе звезд тем больше, чем меньше для них вероятность захвата нейтронов. Ядрами, устойчивыми по отношению к захвату, и являются изотопы с магическими числами нейтронов. Такие ядра обладают повышенной распространенностью. Эта стадия эволюции осуществляется иа звездах, называемых красными гигантами. В недрах красного гиганта температура продолжает расти. При 10 К медленные реакции захвата нейтронов уступают место все более быстрым. Процесс приобретает ла- [c.426]

    И.э. II рода обусловлены различиями таких св-в ядер, как спин, энергия у-квантов, испускаемых после захвата нейтрона, наличие изомерных состояний (см. Изомерия атомных ядер) и нек-рых др. Эти И. э. проявляются, иапр., в неодинаковом распределении изотопов или ядерных изомеров между разл. хим. формами, содержащими ядра, к-рые образуются в результате захвата нейтронов. Так, после нейтронного облучения бромбензола содержание " Вг в материнской форме на 10-15% ниже, чем "Вг. [c.197]

    Деление атомных ядер. При захвате нейтронов ядрами урана происходит деление ядер на два соизмеримых по величине осколка с отношением масс примерно 3 2, из которых после ряда вторичных радиоактивных превращений образуются ядра стабильного, изотопа того или иного элемента. Деление ядер освобождает гораздо больше энергии, чем обыкновенные ядерные процессы, а именно 170—200 Мэе при каждом делении. При этом из ядра выбрасываются вторичные быстрые нейтроны, число которых в некоторых случаях больше числа захваченных нейтронов, так как взамен одного нейтрона, израсходованного на деление, образуется от двух до трех нейтронов. Благодаря этому раз начавшийся процесс может самопроизвольно прогрессировать по цепному механизму. На этом принципе основан один из вариантов атомного оружия. В атомных реакторах скоростью цепной реакции управляют с помощью замедлителей, поглощающих избыточные нейтроны. [c.716]

    Было рассчитано содержание всех ядер, возникших при быстром захвате нейтронов ядром Ре . В расчетах учитывалось возможное изменение температуры взрыва звезды в интервале от 1,45 10 до 0,8 10 град, число нейтронов принималось равным 10 см /сек. Учитывалось также изменение энергии связи нейтронов для ядер с N = 50, 82, 126 и 152, на которое мы ранее уже обращали внимание. При вычислении распространенностей содержание изотопа Те 2 в смеси принималось равным его космической распространенности—1,48 (атомная распространенность кремния 10 ). Рассчитанная распространенность изотопов с массовыми числами от 71 до 265, образовавшихся при быстром захвате нейтронов ядром Ре , показана в виде кривой на рис. 45. В общем наблюдается вполне удовлетворительное согласие рассчитанных значений и средней космической распространенности этих же ядер. Это еще раз подтверждает, что процесс быстрого захвата нейтронов должен играть весьма существенную роль в образовании изотопов тяжелых элементов. [c.136]

    Использование как ядерного горючего основано на том, что при соударении его ядра с медленным тепловым нейтроном образуется новое ядро неустойчивое и самопроизвольно сразу же распадающееся на два больших фрагмента, состоящих из ядер 8г, и др., а также нескольких новых нейтронов, сразу же вступающих в новые ядерные реакции с новыми ядрами Так возникает разветвленная ядерная реакция, в результате которой выделяется 2 10 Дж/моль тепловой энергии, что в 2,5 10 раз превышает количество энергии, выделяющейся при сгорании такой же массы угля. Такой процесс реализуется в атомной бомбе. Для спокойного протекания той же ядерной реакции в атомном реакторе используются поглотители нейтронов в виде стержней из металлов с большим сечением захвата нейтронов, например кадмия, и замедлители нейтронов в виде графитовых блоков или тяжелой воды ВзО. Помимо самопроизвольному распаду под действием тепловых нейтронов способен подвергаться также трансурановый изотоп плутония который получают в значительных количествах в атомных реакторах. В настоящее время используется для производства ядерного оружия. [c.193]

    У элементов с атомным номером больше 30 с увеличением массы ядра стабильность его уменьшается. Однако когда нейтроны выделяются в значительном количестве, возможно также образование еще более тяжелых ядер в результате реакции захвата нейтронов. Большая часть этих ядер претерпевает Р -распад, при этом атомный номер возрастает. В результате таких процессов внутри звезд рождаются разнообразные элементы. [c.19]

    Возникло понимание, что, поскольку число рождаемых в этой реакции нейтронов больше 1, этот процесс может развиваться по схеме цепной реакции, и при благоприятных условиях может приобрести характер взрыва. Действительно, от момента захвата нейтрона ядром до его деления проходит время порядка 10 секунды. Для деления 1 грамм-атома урана (235 г) нужно PS нейтронов. Если в одной ступени деления число нейтронов удваивается, то это число нейтронов возникнет через 10 секунды в 80-м поколении. За это время выделится энергия 2 10 эрг, что больше, чем получается при сгорании 700 тонн угля. К сожалению, именно возможность создания сверхбомбы, а отнюдь не перспектива мирного применения ядерной энергии послужила стимулом для интенсивных исследований физики атомного ядра в Западной Европе, США и СССР в середине XX века. [c.115]

    Нейтроны, являясь нейтральными частицами, легко доходят до ядра атома, так как на них не оказывают влияния ни электроны атомной оболочки, ни действие кулоновских сил ядра, причем начальное число нейтронов сокращается до значения п за счет захвата нейтронов ядрами. Поэтому закон поглощения [уравнение (1. 44)] может быть в данном случае записан следующим образом  [c.43]

    Образующийся при захвате нейтронов ядрами плутоний, представляющий собой ценное атомное сырье, может быть выделен из урана химическими методами. [c.194]

    При последовательном захвате нейтронов, как известно, первоначально образуются лишь более тяжелые изотопы того же элемента, т. е. растет массовое число. Лишь захват нейтрона самым тяжелым из устойчивых изотопов приводит к неустойчивому, перегруженному нейтронами ядру. Последнее претерпевает р-распад, т.е. испускает электрон, и переходит в ядро следующего элемента с атомным номером на единицу больше. Подобную цепь ядерных реакций путем нейтронного захвата, приводящую к образованию нового элемента, можно проследить на процессе превращения стронция, имеющего несколько устойчивых изотопов, в иттрий (V). Так, 5г , [c.16]

    Важнейшее свойство урана состоит в том, что ядра некоторых его изотопов способны к делению при захвате нейтронов при этом выделяется громадное количество энергии. Это свойство урана используется в ядерных реакторах, служащих источниками энергии, а также лежит в основе действия атомной бомбы (см. 37). Непосредственно для получения ядерной энергии применяются изотопы [c.624]


    В атомной промышленности торий является сырьем для получения делящегося, подобно урану-235, изотопа урана 11-233, в который торий превращается в урановых реакторах в результате захвата его ядрами медленных нейтронов и двукратного выбрасывания р-частиц, т. е. так же, как уран превращается в плутоний  [c.668]

    СЕЧЕНИЕ ЗАХВАТА — величина, показывающая вероятность присоединения ядерных частиц к атомному ядру. В таблице статьи Сечение активации приведены С. 3. тепловых нейтронов для изотопов элементов с 2 < 92. Атомные сечения представляют собой средневзвешенные С. з. для естественных смесей изотопов. В статьях об отдельных химич. элементах приведены атомные С. з. тепловых нейтронов для соответствующих элементов. [c.423]

    Цепными реакциями являются реакции деления ядер 2зэр и В процессе деления ядра урана или плутония, вызванного захватом нейтрона, происходит выделение некоторого числа (от двух до трех) нейтронов. Выделяющиеся нейтроны захЕ ЭТЫваются другими ядрами урана илн плутония, и при определенных условиях происходит деление последних. Каждый нейтрон может вызвать деление одного ядра урана или плутония. Поэтому число нейтронов, возникающих в результате деления, возрастает в геометрической прогрессии. Таким образом, если преобладающее число нейтронов деления может быть использовано для новых актов деления, наблюдается лавинообразное нарастание числа делящихся атомов и, следовательно, числа нейтронов и количества выделяющейся энергии, т. е. при этом происходит типичный разветвленный процесс, в котором роль промежуточного вещества играют нейтроны. Этот процесс и используется при получении атомной энергии. [c.205]

    Важнейшее свойство урана состоит в том, что ядра некоторых его изотопов способны к делению при захвате нейтронов при этом выделяется громадное количество энергии. Это свойство урана используется в ядерных реакторах, служащих источниками энергии, а также лежит в основе действия атомной бомбы. Непосредственно для получения ядерной энергии применяются изотопы и 9211. Из них 2 применяется в виде природного урана, обогащенного этим изотопом. Важнейший метод обогащения (или выделения) изотопа основан на различии в скорости диффузии газообразных соединений изотопов через пористые перегородки. В качестве газообразного соединения урана используют его гексафторид ОГе (температура сублимации 56,5 °С). Из изотопа получают изотоп плутония 94Ри, который также может использоваться в ядерных реакторах и в атомной бомбе. [c.503]

    Изотопы оказываются устойчивыми только прд определенном соотношении протонов и нейтронов в ядре, характерном для заданного X. Изотопы с массовыми числами, отклоняющимися от характерного соотношения, будут неустойчивыми, )адиоактивными. На рис. 180 они размещаются выше и ниже полосы устойчивости. Наиболее тяжелые изотопы элементов, расположенные над полосой устойчивости, имеющие избыточное число нейтронов, как правило, оказываются р-активными. Например, у стабильного изотопа Ьа массовое число 139 изотопы с атомной массой от 140 до 144 Р-радиоактивны. Наиболее легкие изотопы элементов, которые попадают в область под полосой устойчивости и имеют в ядре недостаток нейтронов, проявляют склонность к позитронному распаду или электронному захвату. Неустойчивость ядер к процессам самопроизвольного деления встречается только для изотопов наибо.пее тяжелых элементов. [c.411]

    ВИННЫЙ характер, и ироисходит взрыв. Огромное количество материи рассеивается в космическом пространстве в Еиде межзвездного газа, который в дальнейшем служит материалом для образования звезд второго поколения. Область взрыва в теч( ние длительного времени является источником мошных космического и радиоизлучений. Взрыв и колоссальные ио мощности потоки нейтронов создают условия для синтеза самых тяжелых ядер с атомной массой более 250. Имеются данные о том, что ири взрыве некоторых звезд синтезируются ядра фермия и калифорния. Изотоп калифорния подвергается делению, и энергия его превышает энергию всех других изотопов тяжелых элементов, которые могли бы образоваться ири многократном захвате нейтронов другими ядрами в момент взрыва. [c.427]

    С) связывают с их склонностью вступать в (а, п) реакции. В результате реакции Be(a, n) впервые был получен нейтрон. Радиоактивный распад вымерших на Земле и в метеоритах тяжелых элементов привел к повышенному распространению изотопов свинца. Свинец и другие магические ядра благодаря заполненности энергетических уровней нуклонов в ядре более устойчивы к реакциям захвата нейтронов и потому более распространены. На Земле непрерывно происходят ядерные процессы, ведушие в конечном счете к изменению распространенности элементов и изменению их изотопного состава. Однако все эти процессы идут медленно и результаты анализа вещества земной коры показывают, что изотопный состав элементов на Земле практически постоянен. Например, у хлора, извлеченного из морской воды и выделенного из минералов (апатита и др.), атомная масса оказалась одинаковой. То же самое обнаружено для N1, Ре, 51, Н , Ы, 5Ь, Си и других элементов. [c.432]

    По неравновесным теориям синтез атомных ядер протекает при низких температурах и давлении. Одной из наиболее широко известных таких теорий является a-P-Y-тeopия, предложенная в 1948 г. Согласно этой теории, возникновение химических элементов происходило в момент быстрого расширения первичной материи, называемой илём . Под ним подразумевается система из нейтронов и гамма-квантов при большом данлении. Когда в результате релятивистского расширения давление в системе упало, то нейтроны стали превращаться в протоны и электроны, ибо газ, состоящий из одних нейтронов, может существовать только лишь при очень высоких плотностях, подобных плотностям нуклонов в атомных ядрах. Образующиеся протоны захЕ-атынали нейтроны с образованием дейтронов, которые в свою очередь также способны присоединять нейтроны. Предполагается, что за 15 мин путем Последовательного захвата нейтронов и Р-распада образующихся ядер, подобно тому как это происходит в ядерном реакторе за длительное время, были созданы все существующие в настоящее время изотопы природных стабильных элементов. Описанная теория хотя Удовлетворительно объясняет некоторые закономерности распространенности изотопов в области тяжелых ЗДементов, но совершенно неприменима к объяснению [c.99]

    Такова действительность. А причины Во-первых, берклий пе нашел такого стратегически важного применения, как плутоний, а во-вторых, берклий значительно менее доступен. Чтобы получить берхший из урана, нужно суметь присоединить к его ядру 5—11 нейтронов. Это очень длинный и трудный путь, на котором нужно перескочить через несколько пропастей деления (в которые безвозвратно скатывается большинство образующихся атомных ядер) а протиснуться сквозь узкие бутылочные горлышки — изотопы, Которые никак не желают присоединять нейтрон или, выражаясь на языке физиков, имеют малое сечение захвата нейтрона. [c.424]

    В то время как космическое 3 К излучение даёт информацию о состоянии Вселенной через 10 лет после большого взрыва, распространённость легчайших ядер В, Не и может быть использована для получения информации о Вселенной на значительно более раннем этапе её развития (табл. 3.1.1). Считается, что все остальные тяжёлые элементы были образованы в звёздах. Слияние ядер во время гидростатического горения тяжёлых звёзд — это второй важный процесс образования элементов, в результате которого формируются элементы Периодической системы, вплоть до железа. Однако поскольку среди всех элементов железо обладает наибольшей энергией связи в расчёте на один нуклон (около 8 МэВ/нуклон), образование более тяжёлых элементов в результате слияния ядер становится уже невозможным. Так как в охлаждаюш,ейся Вселенной вследствие увеличения кулоновских барьеров более тяжёлые элементы не могут уже образовываться в достаточном количестве в процессах с участием заряженных частиц, основу третьего механизма составляют реакции захвата нейтронов с последуюш,им -распадом [7, 11. Процесс -распада создаёт предпосылки для увеличения на единицу атомного номера ядра. В этой связи различают, главным образом, в- и г-процессы. Согласно современной точке зрения, формированием самых тяжёлых элементов таким путём происходило во внешних оболочках массивных звёзд на стадии взрыва сверхновых (раздел 3.4). [c.47]

    Захватывая нейтрон по реакции (п,7), ядро-мишень (в данном случае — изотопы плутония) увеличивает свою атомную массу на единицу, превращаясь в следующий изотоп того же элемента. Так продолжается до тех пор, пока очередь не дойдёт до такого изотопа, избыточное количество нейтронов в ядре которого определит энергетическую необходимость ядерного превращения путём /3-распада. При этом избыточный нейтрон превращается в протон и заряд ядра увеличивается на единицу — исходный химический элемент превращается в следующий. Это упрощённое описание даёт общее представление о схеме образования новых химических элементов при нейтронном облучении. В действительности ядерные характеристики изотопов ТУЭ определяют более широкую палитру конкурирующих ядерных превращений, среди которых можно назвать электронный захват (превращение протона ядра в нейтрон), различные изомерные переходы, а также характерные только для тяжёлых ядер а-распад и спонтанное деление. Важно отметить, что для того, чтобы пройти путь от 238рц 252(2 необходимо осуществить последовательность ядерных реакций, которая должна включать 14 нейтронных захватов. Чтобы провести этот процесс в разумное время и при этом накопить весовое количество целевых радионуклидов, необходимо обеспечить очень высокую плотность потока нейтронов в объёме облучаемого материала. Значения тепловых сечений и резонансных интегралов некоторых изотопов ТПЭ [4] приведены в табл. 9.1.2. [c.507]

    Тяжёлая вода, характеризуясь высокой теплоёмкостью, являясь апро-тонным растворителем, обладает также низким сечением захвата тепловых нейтронов дейтерием а = 0,0015 барн), которое в 200 раз меньше, чем для лёгкого изотопа водорода — протия а = 0,3 барн). Тяжёлая вода по замедляющей способности в отношении нейтронов в 3-4 раза эффективнее графита. Отмеченные обстоятельства обеспечивают использование тяжёлой воды в качестве теплоносителя и замедлителя нейтронов в энергетических и исследовательских ядерных реакторах, в ЯМР-спектроскопии, в фундаментальных научных исследованиях, связанных с изучением структуры атомного ядра. Тяжёлая вода, так же как и входящий в её состав дейтерий, широко используется при производстве большой гаммы дейтерий содержащих меченых химических соединений, широко применяющихся в медицине, биологии, в различных отраслях химии, в ядерной физике, в ЯМР и других видах спектроскопии. В виде дейтерида лития дейтерий входит в состав термоядерного оружия. По общему убеждению специалистов, в будущем дейтерий наряду с тритием станет компонентом топлива энергетических термоядерных реакторов, в первом поколении которых будет осуществлена реакция синтеза Т (В, п) Не + 17,6 МэВ. Эта реакция в сравнении с другими реакциями синтеза, предполагающими участие изотопов водорода, характеризуется наибольшим энерговыделением и, как следствие, наименьшим расходом дейтерия (100 кг/год на 1 ГВт электрической мощности). [c.210]

    Сцилард и Чалмерс [112] показали, что при определенных условиях активный изотоп, образующийся в ядерной реакции без изменения атомного номера, можно (при большой удельной активности) хищгческим путем отделить от облученного материала. Самой важной ядерной реакцией, идущей без изменения атомного номера, является радиационный захват нейтронов (п, у) однако при реакциях типа (п, 2п), (у, п) и (с1, р) также возникают изотопы облучаемого элемента. Теория эффекта Сциларда—Чалмерса будет рассмотрена в п. 6, но уже здесь можно отметить, что он, по крайней мере частично, обусловливается следующим простым механизмом. Даже если составное ядро не испускает тяжелых частиц, теряя энергию в виде фотонов (радиационный захват), образующееся после испускания фотона ядро (атом) испытывает отдачу. Как правило, энергия отдачи достаточна для разрыва химической связи между данным атомом и остальной молекулой. Это тем более имеет место, если испускается не фотон, а тяжелая нейтральная частица. [c.100]


Смотреть страницы где упоминается термин Атомное ядро захват нейтронов: [c.645]    [c.250]    [c.9]    [c.9]    [c.205]    [c.300]    [c.165]    [c.645]    [c.480]    [c.102]    [c.102]    [c.78]    [c.80]   
Основы общей химии Том 2 Издание 3 (1973) -- [ c.563 ]




ПОИСК





Смотрите так же термины и статьи:

Атомное ядро

Захват

Захват нейтронов

Нейтрон

Нейтроны с ядрами



© 2025 chem21.info Реклама на сайте