Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Атомное ядро распад

    Виды радиоактивного распада. Атомные ядра радиоактивных элементов могут испытывать различные превращения. Некоторые из них рассматриваются ниже. [c.575]

    БЕТА-РАСПАД ( -распад) — радиоактивное превращение атомного ядра, при котором испускаются р-частицы — электроны (р ) или позитроны (Р+). К Б.-р. относят также захват атомным ядром электронов с ближайшей к ядру электронной оболочки. Массовое число ядра при Б.-р. не изменяется, заряд ядра увеличивается на единицу при испускании электрона и уменьшается на единицу при испускании позитрона или захвате электрона. При этом атом химического элемента превращается в атом другого (соседнего) элемента. [c.44]


    Гамма-спектроскопия основана на эффекте резонансного поглощения атомными ядрами 7-квантов (эффект Мессбауэра). При радиоактивном распаде ядер образуются изотопы в возбужденном состоянии. Их переход в основное состояние сопровождается 7-излучением. Невозбужденные атомные ядра в свою очередь могут поглощать 7-кванты и переходить в возбужденное состояние. Однако это явление возможно лишь в строго определенных условиях. Например, 7-излучение возбужденных ядер Ре одной металлической пластинки может поглощать невозбужденные ядра Ре другой пластинки. Если же источник и приемник 7-лучей находятся в разных соединениях (например, источник Те в металле, а поглотитель — в кристалле РеСЬ), то поглощение 7-лучей наблюдаться не будет. [c.148]

    СТРУКТУРА АТОМНОГО ЯДРА РАСПАД ЯДРА [c.32]

    Ядра являются сложными частицами они образованы из более простых частиц —протонов и нейтронов. Поэтому сами ядра могут претерпевать различные превращения, например радиоактивный распад. Однако при рассмотрении химических систем атомные ядра принято считать неизменными. Исследование превращений ядер выходит за рамки химии и является предметом другой области науки— ядерной физики. В то же время число [c.21]

    Когда атомное ядро поглощает нейтрон, оно необязательно становится новым элементом при этом может образоваться просто более тяжелый изотоп. Так, если кислород-16 приобретает нейтрон (массовое число 1), то он становится кислородом-17. Однако, присоединяя нейтрон, элемент может превратиться в радиоактивный изотоп. В этом случае элемент обычно распадается с излучением бета-частицы, а согласно правилу Содди, это означает, что он становится элементом, занимающим более высокое место в периодической таблице. Таким образом, если кислород-18 получает нейтрон, то он превращается в радиоактивный кислород-19. Этот изотоп излучает бета-частицу и становится стабильным фтором-19. Таким образом, бомбардируя кислород нейтронами, его можно превратить во фтор, [c.175]

    И все это колоссальное количество теплоты выделяется радиоактивными веществами за счет запасов энергии атомного ядра. Распадаясь, радиоактивные ядра выбрасывают из себя лишние частицы. А с вылетом их выделяется и внутриатомная, ядерная энергия, за счет которой эти частицы удерживались в ядре. [c.241]

    Стабильные и радиоактивные изотопы. В настоящее время известно около 280 стабильных изотопов, принадлежащих 81 природному элементу, и более 1500 радиоактивных изотопов, 107 при родных и синтезированных элементов. При этом у элементов с нечетными I не более двух стабильных изотопов. Число нейтронов в таких атомных ядрах, как правило, четное. Большинство элементов с четным 2 характеризуется несколькими стабильными изотопами, из которых не более двух с нечетными А. Наибольшее число изотопов имеют олово (10), ксенон (9), кадмий (8) и теллур (9). У многих элементов по 7 стабильных изотопов. Такой широкий набор стабильных изотопов у различных элементов связан со сложной зависимостью энергии связи ядра от числа протонов и нейтронов в нем. По мере изменения числа нейтронов в ядре с определенным числом протонов энергия связи и его устойчивость к различным типам распада меняются. При обогащении нейтронами ядра излуч-ают электроны, т. е, становятся р -активными с превращением нейтрона в ядре в протон. При обеднении ядер нейтронами наблюдается электронный захват или р+-активность с превращением протона в ядре в нейтрон. У тя- [c.50]

    Кроме этих, перечисленных выше вариантов, в настоящее время используются энергия падающей воды, энергия распада атомного ядра (см. гл. V), энергия Солнца и ветра, геотермальная энергия и энергия, выделяющаяся при сжигании мусора. Все эти виды могут заменить нефть в стационарных установках. Но, к сожалению, пока что нет реальной замены нефти на транспорте. [c.228]


    Гамма-спектроскопия основана на эффекте резонансного поглощения атомными ядрами у-квантов. Это явление было открыто немецким ученым Мессбауэром в 1958 г. (эффект Мессбауэра). Как указывалось (стр. 42), при радиоактивном распаде образуются изотопы в возбужденном состоянии, которое существует около 10 сек. При переходе ядер из возбужденного в основное состояние происходит у-излучение. Невозбужденные атомные ядра в свою очередь могут поглощать V-кванты и переходить в возбужденное состояние. [c.179]

    В результате испускания атомными ядрами а-лучей массовое число А уменьшается на 4 а.е. м., а заряд — на 2 при испускании р-лучей Z увеличивается на 1, а массовое число не меняется (правила смещения Фаянса и Содди). Кинетика (скорость реакции) ядерного распада подчиняется уравнению первого порядка. Активность радиоактивных веществ выражают в кюри 1 Ки — это такое количество радиоактивного вещества, в котором за 1 с происходит 3,7-10 расп.  [c.35]

    Электронный захват и позитронный распад имеют одинаковые последствия. Разница лишь в том, что электрон, внедряющийся в атомное ядро ири /(-захвате, оставляет свободное место на Д -злектронной оболочке атома. На это место перескакивают электроны с наружных оболочек. В результате возникает характеристическое излучение с длиной волны, соответствующей уже новому, а не исходному атомному ядру. В соответствии с правилом смещения элемент, испытывающий тот или иной распад, смещается в периодической системе вправо или влево на две или одну клетку (прц ИП не смещается). [c.216]

    В атомном ядре электронов нет, тем не менее при р-распаде они излучаются ядрами. Откуда они берутся  [c.25]

    Известны случаи, когда атомные ядра с одинаковыми массовыми числами и одинаковыми порядковыми номерами переходят в один и тот же продукт распада с различными периодами полураспада, например  [c.26]

    В настоящее время протон и нейтрон рассматриваются как различные состояния единой ядерной частицы — нуклона. Так, в ядре протон и нейтрон могут взаимно превращаться друг в друга. Нейтрон — частица недолговечная продолжительность его жизни оценивается в 1,11 10 сек (для сопоставления отметим, что 1 год округленно содержит 3-10 сек). Выбрасывая электрон, нейтрон превращается в протон (пр + е ). При этом нейтрон относительно устойчив только тогда, когда он находится в составе атомного ядра. Свободный же нейтрон быстро распадается по указанному выше уравнению и переходит в протон период полураспада (стр. 384) Тц свободного нейтрона составляет всего лишь 11,7 мин. [c.19]

    Самопроизвольное [спонтанное) деление атомных ядер. Это своеобразный вид радиоактивного превращения атомного ядра. Характерен для тяжелых ядер (ТН, и, Ыр, Ри и т. п.). Сущность явления состоит в том, что данное тяжелое ядро самопроизвольно распадается. Деление большей частью происходит на два сравнимых по массе осколка. Иногда третьим осколком является а-частица. Деление на большее число осколков случается редко. Осколки деления тяжелых ядер содержат избыток нейтронов. Поэтому они претерпевают несколько последовательных -превращений и затем приобретают характер устойчивых ядер. [c.381]

    Как согласовать -радиоактивный распад атомного ядра с фактом отсутствия в нем электронов  [c.46]

    Иногда при радиоактивном распаде происходит втягивание в атомное ядро электрона с ближайшей к ядру электронной оболочки. Это так называемый электронный захват, или /С-захват . Примером может служить превращение изотопа ванадия 2 i V в изотоп титана 22 Ti, которое происходит в результате захвата атомным ядром ванадия одного электрона с Л -оболочки. При этом атомный номер элемента уменьшается на единицу, хотя массовое число не изменяется. [c.215]

    Первая реакция может проходить как в атомном ядре, так и со свободным нейтроном, так как масса последнего (1,0086650 а.е.м.) больше суммы масс протона (1,0072764 а.е.м.) и электрона (0,0005486 а.е.м.). В свободном состоянии нейтрон испытывает р-распад с периодом полураспада (см. ниже) 7=11,7 мин. А вторая реакция возможна только внутри ядра и за счет его энергии, так как масса протона меньше массы нейтрона и позитрона. Третьим видом р-распада является захват ядром электрона из электронной оболочки своего атома ( -захват, или /(-захват). Во всех трех случаях р-распад сопровождается испусканием нейтрино (V) или антинейтрино (у). В результате р"-распада количество протонов в ядре возрастает и его заряд повышается на единицу. Например  [c.576]

    Неодинаковая применимость атомных моделей в обоих случаях обусловлена коренным отличием радиоактивного распада от обычных химических реакций. Если последние связаны с изменениями во внешних слоях атомов, то радиоактивный распад представляет собой процесс, протекающий в атомном ядре. [c.489]

    Гамма-излучение—это поток фотонов (квантов энергии). При 7-излучении атомное ядро не изменяет ни заряда, ни массы. 7-Излучение является следствием перехода атомного ядра из возбужденного состояния в энергетически более устойчивое. Возбужденным ядро бывает после испускания а- или р-частицы. р-Распад ядер, как правило, сопровождается 7-излучением. ос-Из-лучение сопровождается последующим 7-излучением гораздо реже. Значительно реже встречаются другие виды радиоактивного распада, и мы ие будем иа них останавливаться. [c.43]

    ЯДЕРНАЯ ЭНЕРГИЯ (атомная энергия), выделяется при превращениях атомных ядер. Источник Я. э.— внутр. энергия атомного ядра, обусловленная сильным взаимод. между протонами и нейтронами, а также их движением внутри ядра. Я. э. в миллионы раз превосходит энергию хим. превращений. Изменение массы покоя ядер при их превращениях может достигать по порядку величины 0,1%, тогда как перестройка внеш. электронных оболочек при хим. превращениях сопровождается изменением массы покоя атомов и молекул не более чем на 10 %. Особенно энергетически выгоден синтез легких ядер и деление тяжелых. Так, при синтезе гелия из ядер дейтерия и трития выделяется энергия 17,6 МэВ (3,5 МэВ на нуклон), при делении урана — ок. 200 МэВ ( 1 МэВ на нуклон). Радиоакт. распад также сопровождается выделением Я. э., однако его малая скорость обусловливает ничтожно малую полезную мощность. [c.724]

    В ряде случаев, например, при ядерных реакциях, связанных с бомбардировкой атомных ядер заряженными либо незаряженными элементарными частицами, а также ядрами различных атомов (см. гл. 5), или в случае термоядерных процессов, связанных со слиянием атомных ядер, образуется промежуточное так называемое компаунд-ядро. Распадаясь, компаунд-ядра дают продукты ядерной или термо- [c.50]

    Наиболее тяжелые атомные ядра, располагающиеся в конце периодической системы элементов, испытывают а-распад. После а-распада порядковый номер элемента уменьшается на 2, а массовое число — на 4. Новый элемент, возникающий после а-распада, займет место в таблице Менделеева на две клетки влево. Обычно а-активные изотопы группируются в естественные радиоактивные ряды. Схему а-распада можно изобразить следующим образом  [c.404]

    Процесс осуществляется за счет энергии атомного ядра таким образом распад не требует какой-либо термической активации. [c.782]

    Дальнейшее развитие ядерной физики показало, что устойчивость атомного ядра по отношению ко всем видам распада зависит не только от атомного номера, но и от соотношения числа нейтронов и протонов Б ядре. Была выделена область устойчивости атомных ядер, зависящая от числа нейтронов и протонов (рис. 30.7). Интересно отметить, что более стабильны ядра с четным числом этих частиц, особенно же устойчивы ядра с так называемыми магическими числами нейтронов и протонов 2, 8, 20, 28, 50, 82 и 126, которые предполагают наличие в ядре оболочек, подобных электронным оболочкам вокруг него. [c.391]


    В 1900 г. Виллард нашел третью компоненту излучения, испускаемого радиоактивными веществами, так называемые улучи. Эти лучи испускаются атомными ядрами в результате естествейных или искусственных превращений или вследствие торможения заряженных частиц, аннигиляции пар частиц и распадов частиц. ДлинЬ волн у-лучей большинства ядер, лежит в пределах от 0,0001 до 0,1 нм. у-Лучис энергией до 100 кэВ (мягкие у-лучи) ничем кроме своего ядерного происхождения не отличаются от характеристических рентгеновских лучей. Поэтому часто термин "ii-лучи применяют для обозначения электромагнитного излучения любой природы, если его энергия больше 100 кэВ. Фотоны, возт кающие в процессах аннигиляции и распадов, называют v-квантами. [c.102]

    СПОНТАННОЕ ДЕЛЕНИЕ (лат. зроп-1апеп5 — самопроизвольный) — тип радиоактивного превращения, при котором тяжелое ядро распадается на отдельные осколки — ядра элементов с меньшей атомной массой. Обычно образуются два осколка, иногда излучается еще а-частица. Одновременно С. д. сопровождается излучением нескольких нейтронов и у-квантов. [c.235]

    Некоторое время думали, что альфа-частицы, испускаемые атомными ядрами данного изотопа, моноэнергетические. Однако более точные исследования показали, что это не всегда так. В большинстве случаев спектр энергий альфа-частиц состоит из двух или большого числа близко расположенных моноэнергетических групп. Например, при распаде испускается одна моноэнергетиче- [c.394]

    Тот же эффект используется и в случае, когда источником ядерной энергии служат ядра наиболее легких атомных ядер, соединяющихся 1в более тяжелое ядро. При таких ядерных реакциях выделяется особенно много энергии потому, что дефект масс тут наибольший (энергия связи для атомных ядер с 2>5 составляет 7,4—8,8 МэВ). Действительно, кривая дефектов масс показывает, что хотя атомные ядра всех элементов образуются с выделением энергии, больше всего энергии выделяется ири образовании элементов средней части периодической системы. Поэтому можно использовать атомную энергию, выделяющуюся при образавании более тяжелых атомных ядер из самых легких, а также при распаде атомных ядер тяжелых элементов. В первом случае происходит ядерный синтез, во втором — процесс деления тяжелых атомных ядер. [c.211]

    К числу реакций первого порядка относятся процессы разложения некоторых веществ, например оксидов азота. С исключительной точностью подчиняются уравнению для реакций первого порядка все процессы радиоактивного распада. Скорость радиоактивного распада определяется только процессами, происходящими в атомных ядрах, и поэтому не зависят от внешних факторов, таких как температура и давление. Таким образом, радиоактивный распад соверщается со строго определенной скоростью, а по количеству распавшегося вещества можно определить время, в течение которого совершался этот процесс. Следовательно, измерения радиоактивности веществ, присутствующих в земной коре, можно использовать как идеальные, естественные часы для определения продолжительности происходящих в природе процессов, в частности для определения возраста горных пород и Земли. Так, известно, что радиоактивный распад урана (изотопа сопровождается образованием гелия в количестве 8 атомов на I атом урана. Период полураспада урана / =4,5 миллиарда лет. Определяя количество гелия, присутствующего в урановых рудах, можно определить количество распавшегося урана и, следовательно, возраст этих руд. Так как 1/2 = /к1п2 или к= (1п2)/г 1/5,, то возраст руды I можно определить из уравнения (XI.6) в виде  [c.132]

    Несмотря на скопление в атомном ядре одноименно заряженных частиц (протонов), ядро, как правило, не только самопроизвольно не распадается, но и является весьма устойчивым. Очевидно, что такая устойчивость может быть обеспечена лишь возникновением между составными частями атомных ядер, каких-то мощных сил стяжения. Природа последних пока не ясна. Наличие в ядре мощных сил стяжения непосредственно подтверждается излагаемыми ниже соображениями, основанными на точных значениях атомных масс. Усовершенствование методов масс-спектрографии позволило установить, что массы отдельных изотопов показывают отклонения от целочисловых значений. Хотя последние и меньше 0,1% от величины массового числа (т. е. целочисловой атомной массы), однако они все же действительно имеют место, как то видно хотя бы из следующих примеров  [c.508]

    Обычный природный уран состоит из двух изотопов (99,3%) и 235у (0,7%). При соударении нейтрона с ядром образуется новое ядро Такое ядро неустойчиво и сразу же самопроизвольно распадается на два больших фрагмента и несколько нейтронов. Каждый из этих двух фрагментов представляет собой атомное ядро, причем сумма атомных номеров этих фрагментов составляет 92, т. е. равна атомному номеру урана. [c.579]

    Монолитные Р. м. получ. формованием из р-ров (по сухому способу) или расплавов полимеров (см. Пленки полимерные). При вытягивании этих мембран в спец. условиях им м. б. придана микропористость при облучении атомными ядрами или ионами с нослед. выщелачиванием продуктов деструкции из них изготовляют т. н. ядерные микрофильтрац. мембраны. Пористые Р. м. получ. способом мокрого формования или испарением из сформованных жидких пленок (нитей) р-рителя в последнем случае в формовочный р-р предварительно вводят осадитель, упругость паров к-рого ниже, чем у р-рителя (метод спонтанного гелеобразования). При удалении р-рителя р-р распадается на фазы, в результате чего образуется пористая пленка. Для получ. асимметричных Р. м. (т. е. двухслойных, один слой к-рых монолитный, второй — пористый) с пов-сти [c.491]

    Бета-распад — радиоактивное превращение атомного ядра, при котором оно теряет электрон е или позитрон е . В первом случае Р-распад связан с распадом нейтрона по схеме (1.3) во втором >— с распадом протона по схеме (1.4). У подавляющего большинства Р-радиоактивных изотопов распад связан с выбросом электрона, поэтому далее, за исключением особо оговаривашых случаев, говоря о р-из-лучении, будем подразумевать испускание ядром электрона. [c.54]

    Спонтанное деление ядра. Рассмотренные выше схемы самопроизвольного распада атомного ядра предусматривают при радиоактивном распаде относительно небольшое изменение массы ядра. Возможна принципиально иная схема распада, при которой ядро делится на два или большее число осколков, часто с, одновременным выбрасыванием одного или нескольких нейтронов. Этот вид радиоактивного Рис. 13. Зависимость логарифма периода распада получил на-лолураспада по спонтанному типу от М. звание спонтанного [c.58]

    В нриродньк почвах всегда присутствуют различные радионуклиды -радиоактивные элементы с нестабильным атомным ядром естественного или техногенного происхождения, вызывающие мутагенные и канцерогенные изменения в живьк организмах. Одной их важнейших характеристик радионуклидов является период полураспада - время, необходимое для распада 50 % присутствующих радиоактивных атомов. Папример, период полураспада калия-42 составляет 12,5 часа, йода-131 - 8 дней, кобальта-бО [c.54]

    Эрнест Резерфорд (1871 —1937) происходил из аристократической английской семьи. Он родился и получил образование в Новой Зеландии, приехал в Англию молодым человеком, затем получил должность профессора в Монреальском университете (Канада), а по возвращении в Англию был назначен заведующим знаменитой Кэвендищской лаборатории, которой руководил в течение многих лет. Одна из его фундаментальных работ по исследованию электромагнитного излучения была впоследствии использована Маркони при разработке беспроволочного телеграфа он установил природу трех типов лучей, возникающих при радиоактивном распаде, однако наибольшую известность принесли Резерфорду его работы по исследованию строения атома. Он был дважды удостоен Нобелевской премии, первый раз еще в 1908 г., до опытов по прохождению альфа-частиц через золотую фольгу. Резерфорд был не только выдающимся ученым, но также прекрасным научным руководителем, привлекавшим к себе и стимулировавшим работу способных сотрудников своей лаборатории. Можно лищь восхищаться тем, что результаты его измерений размеров атомного ядра, полученные с помощью чрезвычайно простого оборудования, при сравнении с лучшими данными современных измерений до сих пор считаются достаточно точными. [c.63]

    По неравновесным теориям синтез атомных ядер протекает при низких температурах и давлении. Одной из наиболее широко известных таких теорий является a-P-Y-тeopия, предложенная в 1948 г. Согласно этой теории, возникновение химических элементов происходило в момент быстрого расширения первичной материи, называемой илём . Под ним подразумевается система из нейтронов и гамма-квантов при большом данлении. Когда в результате релятивистского расширения давление в системе упало, то нейтроны стали превращаться в протоны и электроны, ибо газ, состоящий из одних нейтронов, может существовать только лишь при очень высоких плотностях, подобных плотностям нуклонов в атомных ядрах. Образующиеся протоны захЕ-атынали нейтроны с образованием дейтронов, которые в свою очередь также способны присоединять нейтроны. Предполагается, что за 15 мин путем Последовательного захвата нейтронов и Р-распада образующихся ядер, подобно тому как это происходит в ядерном реакторе за длительное время, были созданы все существующие в настоящее время изотопы природных стабильных элементов. Описанная теория хотя Удовлетворительно объясняет некоторые закономерности распространенности изотопов в области тяжелых ЗДементов, но совершенно неприменима к объяснению [c.99]

    По содержанию космогенных изотопов можно оценить так называемый космический возраст метеоритов — время, которое прошло с момента их образования при развале астероида или какого-нибудь другого тела сравнительно больших размеров (в котором внутренние части экранированы от космического излучеш-гя) до момента падения на Землю, где интенсивность космического излучения очень мала. Все полученные в настоящее время данные показывают, что имеются существенные различия между космическим возрастом каменных и железных метеоритов. Для каменных метеоритов он колеблется от 5 до 500 млн. лет, для железных от 200 до 2000 млн. лет. Такое расхождение может свидетельствовать о распаде каменных метеоритов после их образования из астероидов или об утечке инертных газов из каменных метеоритов, космический возраст которых определяется в основном по изотопному составу. Для решения этого очень важного для космогонии всей Солнечной системы вопроса необходимо знать точные данные о сечениях образования отдельных космогенных изотопов при взаимодействии космических лучей различной энергии со всеми атомными ядрами, входящими в состав метеоритов. Они могут быть получены на современных ускорителях. [c.162]

    Из этих соотношений видно, что коэффициент прохождения имеет действительное и конечное значение даже в том случае, если больше нуля. Скорость распада атомного ядра должна быть пропорциональной коэффициенту прохождения. Поэтому для нрохонодения различных частиц через одинаковый потенциальный барьер константа скорости распада должна увеличиваться при уменьшении массы проходящих частиц. В дальнейшем мы увидим (табл. 4 гл. У), что для первых членов радиоактивных рядов, начинающихся с урана, актиния и тория, константа скорости испускания электронов примерно в 101 раз больше константы скорости испускания а-частиц (ядер гелия). Заметим, что в случае проникновения частиц заданной массы через различные потенциальные барьеры коэффициент прохождения быстро падает по мере увеличения ширины барьера а и его высоты (зависящей от У. ). Таким образом, стабильность большинства химических элементов соответствует относительно большой глубине потенциальной ямы. [c.173]


Смотреть страницы где упоминается термин Атомное ядро распад: [c.85]    [c.379]    [c.13]    [c.119]    [c.13]   
Основы общей химии Том 2 Издание 3 (1973) -- [ c.567 , c.581 ]




ПОИСК





Смотрите так же термины и статьи:

Атомное ядро



© 2025 chem21.info Реклама на сайте