Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Атомное ядро состав и строение

    Строение атома 1) состав ядра (протоны, нейтроны) 2) заряд ядра и строение атома 3) электронная формула 4) валентные электроны (атомный остов, вакантные орбитали — эти сведения приводятся в зависимости от цели ответа) 5) сравнение основных характеристик атомов соседних элементов — электроотрицательность и т. п. [c.51]

    Рис, 4. Рассеяние а-час- сеяния а-частиц предложил плане-тиц, приближающихся к тарную модель строения атома, атомному ядру Согласно этой модели, атом состо- [c.66]

    В первых главах этой книги уже сообщались некоторые сведения о ядерном строении атома, свойствах атомного ядра и его составе. Так, в гл. 4 при обсуждении,строения атома указывалось, какие частицы, входящие в состав атомного ядра, определяют его массу и заряд. Мы уже знаем, что существование изотопов различных элементов обусловлено неодинаковым числом нейтронов в ядрах атомов одного и того же элемента и что история развития теории строения атома тесно связана с исследованием атомных ядер. [c.424]


    Атомы разных элементов отличаются друг от друга массой, зарядом ядра и числом электронов. Атомное ядро очень мало, но строение его сложно. Оно состоит не только из положительно заряженных протонов, заряд которых равен заряду электрона, но, согласно гипотезе Д. Д. Иваненко и И, Е. Тамма, включают в свой состав нейтральные частицы — нейтроны. Масса протона в 1836,5 раза больше массы электрона и примерно равна массе нейтрона. [c.67]

    Состав атомных ядер. Наименьший заряд и линейные размеры имеет ядро атома водорода — первого элемента периодической системы. У него имеется только один электрон. Его ядро, названное протоном, может входить в состав ядер других элементов. Масса протона очень мало отличается от массы атома водорода и составляет 1836 электронных масс. Кроме того, в состав атомных ядер входят частицы, масса которых очень близка к массе протонов и равна 1838 электронных масс, но которые отличаются от них отсутствием электрического заряда. Из-за этого они получили название нейтроны и обозначаются о . Протоны и нейтроны часто называют нуклонами, что значит ядерные частицы. В 1932 г. Д. Д. Иваненко и Е. Н. Ганой высказали предположение, что атомные ядра состоят из протонов и нейтронов. Это предположение затем было обосновано В. Гейзенбергом и вошло в науку под названием протоно-нейтронной теории строения атомных ядер. Так как массы протона и нейтрона очень близки и каждая примерно равна одной атомной единице массы, то сумма протонов и нейтронов приблизительно выражает атомную массу. Заряд же ядра равен числу протонов, так как нейтроны — электронейтраль-ные частицы и на заряд ядра не влияют. Сумма числа протонов и числа нейтронов названа массовым числом. Между числом протонов, нейтронов и массовым числом существует зависимость  [c.32]

    Так, через категории свойство, состав и строение шло развитие не только химии, изучавшей химические соединения и их молекулы, но и физики, проникшей в глубь атома, а затем и в глубь атомного ядра. Сейчас физика проникает еш е глубже, в область элементарных частиц, видоизменяя в своем движении те категории, которые представляли собой когда-то вехи в развитии химии. [c.11]

    Но только когда на основе открытия атомного ядра Резерфордом (1911 г.) Нильс Бор создал свою модель атома (1ЙЗ г.), возникли сразу две следующие проблемы в применении к атомам состав—строение и строение-свойство из них, как и прежде, самой важной оказалась последняя. Ибо она замыкала новый цикл исследований (виток спирали) и возвращала мысль ученых к исходному пункту всего научного движения на данном его уровне. [c.260]

    Открытие нейтронов и протонно-нейтронная теория строения атомного ядра вскрыли физический смысл изотопов. Изотопами называются такие разновидности химического элемента, которые отличаются своим атомным весом, но тождественны по своим химическим свойствам и поэтому занимают одно и то же место в периодической системе. Так, например, имеется три изотопа свинца с атомны.м весом 206, 207 и 208. В природе эти изотопы встречаются всегда в смеси, приче.м процентный состав каждого из них в ней постоянен. Поэтому суммарный вес свинца в таблице Менделеева 207,22. Углерод в природе является постоянной смесью двух изотопов с атомным весом 12 и 13, причем последний изотоп составляет 1,1%. [c.49]

    Элементарное строение ядра атома. В дальнейшем было установлено, что кроме электрона в состав атома входят и другие элементарные частицы протоны и нейтроны. Протон — это частица с массой, равной единице атомной массы, имеющая положительный заряд, который равен электрическому заряду электрона, только противоположного знака. Нейтрон — это электронейтральная частица с массой, равной массе протона. [c.34]


    Картина строения макротел в огромном большинстве случаев может быть представлена в основных чертах следующим образом. Отдельные сравнительно небольшие совокупности ядер и электронов сильно взаимодействуют между собой, образуя химические частицы — атомы, атомные ионы, молекулы, молекулярные ионы, свободные радикалы. Отдельные химические частицы, взаимодействуя между собой, образуют макротело. Как правило, взаимодействие между собой отдельных химических частиц, входящих в состав вещества, является значительно более слабым, чем взаимодействие ядер и электронов, входящих в состав одной частицы. Это и является основанием для введения понятия химическая частица и критерием егр объективной значимости как промежуточного структурного образования между ядрами и электронами, с одной стороны, и макротелом, с другой стороны. [c.5]

    Протонно-нейтронная теория строения ядра объясняет существование изотопов различных элементов. Так как свойства химических элементов определяются зарядом ядер его атомов, то становится понятным, что изменение числа нейтронов в ядре изменяет только атомную массу, но не изменяет заряда ядер, а следовательно, и химических свойств этих атомов. Таким образом, различные изотопы данного элемента отличаются между собой только числом нейтронов, входящих в состав ядер атомов число протонов же у них одинаково. Атомы изотопов изображают символом химического элемента, около которого слева вверху пишут массовое число, а внизу — заряд ядра (порядковый номер). Например, изотопы хлора обозначаются С1 и "С1. В ядрах обоих изотопов 17 протонов нейтронов же у С1 — 18, у "С1 — 20. [c.33]

    Итак, состав ядер атомов различных химических элементов не одинаков, а потому элементы отличаются по атомной массе. И поскольку в состав ядра входят протоны, ядро заряжено положительно. Заряд ядра численно равен порядковому номеру элемента 2. Он определяет число электронов в электронной оболочке атома и ее строение, а тем самым и свойства химического эле.мента. Поэтому положительный заряд ядра, а не ато. шая. масса. является г.мв-ной характеристикой ато.на, а значит, и элемента. На этой [c.31]

    Изотопы одного элемента имеют один и тот же ядерный заряд, следовательно, в состав их ядер входит одно и то же число протонов. Сравним строение атомных ядер двух изотопов хлора. Оба изотопа хлора в периодической системе занимают место № 17. Число протонов у обоих изотопов равно 17, но так как их массовые числа различные (35 и 37), то у первого изотопа в ядре, помимо 17 протонов, содержится 35—17 = 18 нейтронов, а у второго изотопа содержится 37—17=20 нейтронов. [c.309]

    Итак, состав ядер атомов различных химических элементов не одинаков,а потому элементы отличаются по атомной массе.И поскольку в состав ядра входят протоны, ядро заряжено положительно. Так как заряд ядра численно равен порядковому номеру элемента 2, то он определяет число электронов в электронной оболочке атома и ее строение, а тем самым и свойства химического элемента. Поэтому положительный заряд ядра, а не атомная масса является главной характеристикой атома, а значит, и элемента. На этой основе дано более точное определение химического элемента (с. 5), понятие о котором является в химии основным. [c.22]

    Не следует забывать, что химия исследует вещество только в одном из аспектов. Изучая состав, химические свойства, способы получения твердых веществ, мы не можем обходиться без представления об их электронной конфигурации, кристаллической структуре, без знания закономерностей, которым подчиняются изменения физических свойств с изменением энергетического состояния вещества, словом без физической теории и без физических экспериментов. Химия, физика твердого тела и молекулярная биология — по определению физика-теоретика айскопфа — являются непосредственным следствием квантовой теории движения электронов в кулоновском поле атомного ядра. Все многообразие химических соединений, минералов, изобилие видов в мире организмов обусловливается возможностью расположения в достаточно стабильном положении сравнительно небольшого количества первичных структурных единиц — атомов — огромным количеством способов, диктуемых пространственной конфигурацией электронных волновых функций. Длина связи, т. е. межатомное расстояние,— это диаметр электронного облака, определяемый амплитудой колебания электрона в основном состоянии. Поскольку масса ядра во много раз больше массы электрона, соответствующая амплитуда колебания ядра во много раз (корень квадратный из отношения масс) меньше. Поэтому, как отмечает Вайскопф, ядра способны образовывать в молекулах и кристаллах довольно хорошо локализованный остов, устойчивость которого измеряется энергией порядка нескольких электронвольт, т. е. долями постоянной Ридберга. Местоположения ядер атомов, образующих остов кристалла, с большой точностью определяются методом рентгеноструктурного анализа. Таким образом, бутлеровская теория строения, структурные формулы в наше время получили ясное физическое обоснование. [c.4]

    По теории Д. Д. Иваненко и Е. Н. Гапона (1932), все протоны и все нейтроны, входящие в состав структуры данного атома, полностью сосредоточены в его ядре (протонно-нейтронная теория строения атомного ядра). Поэтому указанные элементарные частицы получили общее название нуклонов (лат. nu leus — ядро). [c.19]

    Дифракционные методы. В дифракционных методах исследования рентгеновское излучение, поток электронов или нейтронов взаимодействуют с атомами в молекулах, жидкостях или кристаллах. При этом исследуемое вешество играет роль дифракционной решетки. А длина волны рентгеновских квантов, электронов и нейтронов должна быть соизмерима с межатомными расстояниями в молекулах или между частицами в жидкостях и твердых телах. Сама же дифракция (закономерное чередование максимумов и минимумов) представляет собой результат интерференции волн. Она зависит от химического и кристаллохимического строения, следовательно, соответствует структуре исследуемого вещества. Поэтому есть принципиальная возможность для решения обратной задачи дифракции, т. е. установление структуры вещества по его дифракционной картине. Обратная задача дифракции для рентгеновского излучения, дифрагирующего в конденсированных средах, называется рентгеноструктурным анализом. Методы применения электронных и нейтронных пучков вместо рентгеновского излучения называются электронографией и нейтронографией соответственно. Общим для этих методов является анализ углового распределения интенсивности рассеянного рентгеновского излучения, нейтронов и электронов в результате взаимодействия с веществом. Но природа рассеяния рентгеновских квантов, нейтронов и электронов не одинакова. Рентгеновское излучение рассеивается электронами атомов, входящими в состав вещества. Нейтроны же рассеиваются атомными ядрами а электроны — электрическим полем ядер и электронных оболочек атомов. Интенсивность рассеяния электронов пропорциональна электростатическому потенциалу атомов. [c.195]

    Диапазон геометрических структур, для описания которых полезно обращаться к многогранникам, чрезвычайно широк. Так, например, правильный тетраэдр симметрии одинаково подходит как для молекулы тетрамера мышьяка, Аз4, так и для молекулы метана, СН (рис. 3-27). Однако в их строении имеется одно существенное различие. Оно состоит в том, что в молекуле все четыре атомных ядра, входящих в ее состав, расположены в вершинах правильного тетраэдра, ребрами которого служат химические связи между атомами мышьяка. В молекуле же метана имеется центральный атом углерода, от которого четыре химические связи направлены к четырем вершинам тетраэдра, где находятся атомы водорода. В данном случае ребра тетраэдра уже не являются химическими связями. [c.119]


    Ядерная спектроскопия (7-резонансная С., ГРС, мес-сбауэровская С.) основана на резонансном поглощении у-квантов атомными ядрами, происходящем без потери энергии на отдачу (эффект Мессбауэра). Такое поглощение возможно для ядер, входящих в состав твердых тел, когда импульс отдачи передается решетке и излучающее (поглощающее) ядро не изменяет своего положения в пространстве. В у-спектрах наблюдается линия с частотой, в точности соответствующей энергии 7-перехода, причем ее ширина совпадает с естественной шириной Г соответствующего ядерного уровня. Значения Г для ядерных уровней атома мало отличаются от значений для электронных уровней, однако острота резонанса, характеризуемая отношением Г к разности энергий Д ,у -того и /-того уровней, между к-рыми происходит переход, на четыре порядка меньше. Поэтому у-спектры чрезвычайно чувствительны к малейшим изменениям энергии испускаемых или поглощаемых квантов. Это приводит к тому, что метод ГРС может определять факторы, даже очень слабо влияющие на энергетич. состояние атома, напр, различие в строении внешних электронных оболочек ядер-излу-чателей и ядер-поглотителей (химич. сдвиг) или квад-рупольные расщепления линий для ядер, обладающих собственным квадрупольный моментом. [c.234]

    Химические реакции, в которых участвуют атомы разных элементов, не затрагивают атомных ядер. Чтобы получить атом нового элемента, нужно изменить заряд атомного ядра, изменить число протонов в ядре, а когда изменится заряд ядра, немедленно произойдет и изменение строения электронных оболочек. Если число протонов в ядре уменьшилось, то внешняя оболочка потеряет электроны. При увеличении заряда происходит захват электронов на внешнюю оболочку. Изменить состав ядра внешним воздействием несравненно труднее, чем вызвать химическое препращение. потому [c.254]

    Многообразие сложных веществ обусловлено их различным количественным составом. Например, известно для азота пять форм оксидов N20, N0, ЫгОз, ЫОг, ЫгОв для водорода две формы — Н2О и Н2О2 и др. С точки зрения теории строения атома количественный состав неорганических соединений определяется количеством электронов в электронной оболочке атома и количеством протонов и нейтронов в атомном ядре. Так установлено существование разновидностей атомов химических элементов, ядра которых при одном и том же заряде обладают различной массой. Такие разновидности атомов названы изотопами. Так, для атома калия известны три изотопные разновидности Итак, явления аллотропии и изотопии служат формами проявления многообразия неорганических веществ. [c.229]

    Коллоидная частица имеет сложное строение. В центре частицы находится ядро, представляющее собой скопление большого количества молекул или атомов вещества, образующего золь. На поверхности ядра из дисперсионной среды адсорбируются ионы того или иного знака. Совокупность ядра с адсорбированными на поверхности ионами называется коллоидной частицей или гранулой. Обычно адсорбируются главным образом ионы, в составе которых находятся элементы или атомные группировки, имеющиеся в веществе ядра частицы (правило Носкова — Фаянса). Ионы, адсорбирующиеся на поверхности ядра и обусловливающие величину и знак электрического заряда частицы, называются потенциалопре-деляющими ионами. Они образуют так называемый не.подвижный слой ионов. Ионы противоположного знака (противоионы) частично адсорбируются на поверхности ядра частицы (т. е. входят в состав неподвижного слоя), а частично располагаются в жидкости вблизи гранулы (диффузный или подвижный слой ионов). Совокупность гранулы с диффузным облаком противоионов называется мицеллой. [c.165]

    Типичный химический подход включает следующие стадии 1) проведение предварительных качественных проб для определения общего состава испытуемого вещества 2) разделение испытуемого вещества на совокупности составляющих — в таких совокупностях каждая составляющая может быть определена в присутствии всех остальных составляющих данной совокупности 3) качественный анализ на такие составляющие 4) учет любых превращений, которые могут произойти при разделении и анализе, как, например, превращение углеводородных соединений в НгО и СОг или сульфида в сульфат 5) расчет состава исходного исследуемого вещества. В наиболее благоприятных случаях анализ позволяет перечислить чистые вещества, действительно содержащиеся в испытуемом в остальных случаях сообщается лишь процентный состав каждого из обнаруженных элементов (т. е. процентный состав ядер с различными 2). Следует постоянно иметь в виду, что в результате анализов указываются обнаруженные в составе исследуемого вещества элементы, несмотря на то что их атомы находятся в веществе вовсе не в элементарном состоянии. Например, говорят, что вода состоит по весу из 88,8% кислорода и 11,19% водорода, или по атомному составу из 33,33% кислорода и 66,67% водорода, хотя в ней вообще нет атомов кислорода и водорода в элементарном состоянии. Карбонат кальция, согласно данным анализа, состоит по весу из 40% кальция, 12% водорода и 48% кислорода, а по атомному составу из 20% кальция, 20% углерода и 60% кислорода, хотя в нем на самом деле не существует элементарного кальция, углерода и кислорода. Анализ на элементы еше не дает нам сведений о состоянии, в котором находятся атомы. Он указывает только процентный состав ядер каждого порядкового номера, но не описывает электронное строение вещества вблизи каждого ядра. Определение электронного строения вещества требует большего, чем одни только данные по элелментному составу. [c.168]

    В том же 1932 г. советские физики Д. Д. Иваненко и Е. И. Гапоп (а также немецкий физик В. Гейзенберг) предложили протонно-нейтронную теорию строения ядра атома. По этой теории ядро атома каждого элемента состоит только из протонов и нейтронов, электроны же не входят в состав атомных ядер. [c.50]

    Химические свойства элементов, как известно из неорганической химии, определяются структурой электронного окружения ядер, и в первую очередь структурой внешних электронных слоев — так называемыми валентными электронами. Сходство строения внешних электронных слоев элементов проявляется в сходстве свойств этих элементов — такие элементы входят в состав одной группы Периодической системы Д. И. Менделеева. Вступая в химическую реакцию, элементы в большей или меньшей степени деформируют свои внешние электронные слои электроны внешних слоев реагирующих элементов взаимпдрйствуют между собой (перекрываются) и образуют более сложное, в значительной степени общее, электронное облако. При с<10м характер взаимодействия будет зависеть от свойств партнеров по реакции. Так, например, сера, взаимодействуя с металлами, оттягивает электроны к себе, электронное облако металла в большей или меньшей степени (в зависимости от свойств металла) смещается в сторону ядра серы, и в отдельном случае может образоваться почти чисто ионная связь. При взаимодействии же серы с кислородом, хлором или фтором электронное облако оказывается смещенным в сторону ядер кислорода, хлора или фтора. В элементарной сере все атомы связаны между собой типичными атомными связями. [c.6]

    Несколько десятилетий назад опыты физиков с несомненностью доказали сложность материи, состоящей из мельчайших частиц, заряженных положительным члектричеством (протонов), и мельчайших (точно так же в смысле неделимости) частиц отрицательного электричества (электронов). В состав ядра атома входят кроме того найденные и исследованные в 1932 г. нейтральные частицы — нейтроны, — а также открытые в самое последнее время положительные электроны. Подобно тому, как идея Демокрита о прерывистом строении материи благодаря атомной теории Дальтона и опытным доказательствам Перрена приобрела достоверность истины, точно так же предположение о прерывистом строении электричества, высказанное Гельмгольцем во второй половине прошлого века, к началу XX в. обратилось в твердую уверенность, подтвержденную многочисленными опытами. [c.40]


Смотреть страницы где упоминается термин Атомное ядро состав и строение: [c.24]    [c.234]    [c.52]    [c.26]    [c.154]   
Основы общей химии Том 2 Издание 3 (1973) -- [ c.73 , c.558 ]




ПОИСК





Смотрите так же термины и статьи:

Атомное ядро

Атомное ядро строение



© 2025 chem21.info Реклама на сайте