Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Атомное ядро тяжелые

    Действующих поверхностей, закон 2/688, 689 Дейтерий 2/23 атомное ядро, см. Дейтрон(ы) оксид, см. Тяжёлая вода определение 5/335, 336 получение 2/25, 392 5/33 применение 2/25, 26 4/785 5/802 свойства 1/403, 775 2/24, 25, 190, [c.588]

    Помимо магнитного момента атомные ядра обладают ещё и заметными электрическими моментами, зависящими от распределения заряда в ядре. Дипольные электрические моменты у ядер отсутствуют, однако из-за нарушения сферической симметрии распределения зарядов у многих ядер возникает квадрупольный момент Q. Особенно он велик у тяжёлых ядер, имеющих сильно вытянутую форму. Вместе с тем ядра с Z = N = А/2 (стабильные [c.23]


    Наиболее тяжёлые атомные ядра испытывают а-распад. После а-распада порядковый номер элемента уменьшается на 2, а массовое число — на 4. Тяжёлые радиоактивные изотопы группируются в естественные радиоактивные [c.559]

    Другим важным типом распада, свойственным и тяжёлым, и лёгким ядрам, является бета-распад, которым называется превращение нестабильных ядер в ядра — изобары с зарядом, отличающимся от исходного на 1, сопровождающееся испусканием электрона (позитрона) или захватом электрона с атомной оболочки. Одновременно ядро испускает нейтрино или антинейтрино. Периоды полураспада для бета-активных ядер в среднем больше, чем в случае альфа-распада, и лежат в диапазоне 10 сч-10 лет. Это связано с тем, что за процессы 5-распада отвечает так называемое слабое взаимодействие, в то время, как остальные типы распада обусловлены сильным взаимодействием. [c.27]

Рис. 3.4.5. Структура и развитие тяжёлой звезды (массой 2ЪМо). Во время фаз гидростатического горения оболочек звезды из некоторого начального состава вещества (главные компоненты которого показаны) образуются элементы с относительно большими атомными номерами, вплоть до Ре и N1. Гравитационный коллапс ядра ведёт к образованию ударной волны и выбрасыванию примерно 95% массы звезды в межзвёздное пространство (вспышка сверхновой). Внешние слои подвергаются воздействию взрывной ударной волны, которая инициирует дальнейшие термоядерные реакции и (быстрое) образование наиболее тяжёлых химических элементов (см. далее). Внутреннее ядро превращается в нейтронную звезду [57] Рис. 3.4.5. Структура и развитие тяжёлой звезды (массой 2ЪМо). Во время фаз гидростатического горения оболочек звезды из некоторого начального состава вещества (главные компоненты которого показаны) образуются элементы с относительно большими атомными номерами, вплоть до Ре и N1. Гравитационный коллапс ядра ведёт к образованию ударной волны и выбрасыванию примерно 95% массы звезды в межзвёздное пространство (вспышка сверхновой). Внешние слои подвергаются воздействию взрывной ударной волны, которая инициирует дальнейшие термоядерные реакции и (быстрое) образование наиболее тяжёлых химических элементов (см. далее). Внутреннее ядро превращается в нейтронную звезду [57]
    Спонтанное деление. Последний из известных сейчас видов радиоактивного распада был открыт в 1939 г. Г. Н. Флёровым и К. А. Петржаком. Это — спонтанное (самопроизвольное) деление атомных ядер. При таком делении, характерном для ядер самых тяжёлых элементов периодической системы, образуются два осколка — ядра элементов, расположенных в середине периодической системы, и испускаются два-три нейтрона. Деление тяжёлых ядер сопровождается значительным выделением энергии так, энергия деления урана близка к 200 Мэе. Но для всех природных тяжёлых элементов процесс спонтанного деления является очень редким например, ядра №3 испытывают (х-распад с вероятностью, в 1,8 млн. раз превышающей вероятность спонтанного деления. [c.37]

    Отношение числа тяжёлых частиц к числу зарядов, или, другими словами, отношение атомного веса к порядковому номеру, не имеет строго определённого значения. Однако оно изменяется лишь в небольших пределах. Как только это отношение выходит за эти пределы, ядро становится неустойчивым, радиоактивным. [c.91]

    При образовании дальнейших элементов присоединением тяжёлых частиц каждая такая частица увеличивает атомный вес на единицу, а не на 1,008. Следовательно, каждое присоединение нового ядра водорода освобождает энергию, соответствующую атомному весу 0,008. [c.94]

    Ещё нагляднее кривая, показывающая энергию, выделяющуюся при образовании ядра из предыдущего путём добавления одной тяжёлой частицы. На этой кривой, доведённой до атомного веса 36, чётко проявляется особая устойчивость ядер с атомным весом, кратным 4, что наводит на мысль об образовании в этих случаях ядер гелия внутри ядра. [c.96]


    Но вот ещё более сильные электромагнитные поля начинают действовать иа атомную постройку. Они вырывают не два-трп-четыре электронных облака из оболочки атома,— они снимают все. Перед нами раздетый атом, голое ядро ничтожных размеров, в десять тысяч раз меньшее, чем обычный атом. Эти ядра лишены тех индивидуальных черт атома, которые вызываются электронной оболочкой. Они лишены разнообразия и сложности почти всех тех 100 свойств, которые, как мы видели, определяют собой всю глубину н яркость, всё разнообразив и красочность менделеевского мира природы. Создаётся свои, особый мир, как мы говорим, мпр сильно ионизированных частиц, который свойствен звёздным глубинам. Если эти голые ядра, которые в тысячи раз меньше самого атома, сблизятся между собой, может родиться новая, более тяжёлая система п новое вещество, непохожее на вещество нашей земли, в десятки тысяч раз более плотное, чем самые плотные атомы платины и золота  [c.120]

    Тяжёлая вода, характеризуясь высокой теплоёмкостью, являясь апро-тонным растворителем, обладает также низким сечением захвата тепловых нейтронов дейтерием а = 0,0015 барн), которое в 200 раз меньше, чем для лёгкого изотопа водорода — протия а = 0,3 барн). Тяжёлая вода по замедляющей способности в отношении нейтронов в 3-4 раза эффективнее графита. Отмеченные обстоятельства обеспечивают использование тяжёлой воды в качестве теплоносителя и замедлителя нейтронов в энергетических и исследовательских ядерных реакторах, в ЯМР-спектроскопии, в фундаментальных научных исследованиях, связанных с изучением структуры атомного ядра. Тяжёлая вода, так же как и входящий в её состав дейтерий, широко используется при производстве большой гаммы дейтерий содержащих меченых химических соединений, широко применяющихся в медицине, биологии, в различных отраслях химии, в ядерной физике, в ЯМР и других видах спектроскопии. В виде дейтерида лития дейтерий входит в состав термоядерного оружия. По общему убеждению специалистов, в будущем дейтерий наряду с тритием станет компонентом топлива энергетических термоядерных реакторов, в первом поколении которых будет осуществлена реакция синтеза Т (В, п) Не + 17,6 МэВ. Эта реакция в сравнении с другими реакциями синтеза, предполагающими участие изотопов водорода, характеризуется наибольшим энерговыделением и, как следствие, наименьшим расходом дейтерия (100 кг/год на 1 ГВт электрической мощности). [c.210]

    Это соотношение и объясняет тот факт, что при малых массовых числах наиболее устойчивы изотопы с Z = N = А/2 (как, например, С или ) Ы). У устойчивых тяжёлых ядер число нейтронов N всегда несколько превышает Z, чтобы скомпенсировать действием ядерных сил электростатическое рассталкивание протонов. Из (1.3.3) и (1.3.4) также вытекает, что наиболее устойчивыми будут чётно-чётные ядра, что и определяет суш,ествование большого числа стабильных изотопов с чётным Z, о чём говорилось ранее. При отклонении заряда ядра или массового числа от области стабильности энергия связи уменьшается и становится отрицательной, вследствие чего атомное ядро теряет устойчивость и оказывается способным к самопроизвольному превраш,ению в ядра с другими А ц. Z. Более того, поскольку притяжение нуклонов пропорционально А, а энергия электростатического взаимодействия пропорциональна Z , то при больших Z энергия связи ядра всегда будет отрицательна, чем объясняется отсутствие стабильных ядер с > 83. Отметим, что формула (1.3.3) относится к энергии связи основного, наинизшего состояния ядра. Возбуждённые же состояния ядра, как и возбуждённые состояния электронов в атомных оболочках, неустойчивы сами по себе и подвержены спонтанному распаду в основное состояние с испусканием одного или нескольких гамма-квантов. Однако, поскольку энергия связи нуклонов в ядре при возбуждении суш,ественно уменьшается, то возбуждённое ядро может также превратиться в другое ядро путём испускания каких-либо частиц. [c.22]

    Одной из интригуюш,их особенностей в зависимости распространённости элементов от их атомного номера является, как известно, резкий провал при переходе от лёгких элементов к тяжёлым — область лития, бериллия, бора и далее к углероду. Этот провал связан с тем, что синтез лёгких элементов осуш ествляется путём парных столкновений между нуклонами и ядрами с по-следуюш,им /3-распадом внутри звёзд (1 + п Т — Не + п Не. Парный механизм синтеза обрывается на симметричном ядре гелия Не, поскольку ядро Не не суш,ествует и с его помощью невозможен переход к тяжёлым нуклидам. Таким образом, согласно схеме парных столкновений тяжёлые элементы должны отсутствовать во Вселенной, а Вселенная без углерода, железа и т. д. не содержит органических соединений и, следовательно, биологической жизни. Парадокс преодолевается с помощью известной трёхчастичной схемы синтеза ядра углерода из трёх а-частиц (реакция Солпитера) Зек которая открывает возможности синтеза тяжёлых элементов. [c.10]

    В то время как космическое 3 К излучение даёт информацию о состоянии Вселенной через 10 лет после большого взрыва, распространённость легчайших ядер В, Не и может быть использована для получения информации о Вселенной на значительно более раннем этапе её развития (табл. 3.1.1). Считается, что все остальные тяжёлые элементы были образованы в звёздах. Слияние ядер во время гидростатического горения тяжёлых звёзд — это второй важный процесс образования элементов, в результате которого формируются элементы Периодической системы, вплоть до железа. Однако поскольку среди всех элементов железо обладает наибольшей энергией связи в расчёте на один нуклон (около 8 МэВ/нуклон), образование более тяжёлых элементов в результате слияния ядер становится уже невозможным. Так как в охлаждаюш,ейся Вселенной вследствие увеличения кулоновских барьеров более тяжёлые элементы не могут уже образовываться в достаточном количестве в процессах с участием заряженных частиц, основу третьего механизма составляют реакции захвата нейтронов с последуюш,им -распадом [7, 11. Процесс -распада создаёт предпосылки для увеличения на единицу атомного номера ядра. В этой связи различают, главным образом, в- и г-процессы. Согласно современной точке зрения, формированием самых тяжёлых элементов таким путём происходило во внешних оболочках массивных звёзд на стадии взрыва сверхновых (раздел 3.4). [c.47]

    Захватывая нейтрон по реакции (п,7), ядро-мишень (в данном случае — изотопы плутония) увеличивает свою атомную массу на единицу, превращаясь в следующий изотоп того же элемента. Так продолжается до тех пор, пока очередь не дойдёт до такого изотопа, избыточное количество нейтронов в ядре которого определит энергетическую необходимость ядерного превращения путём /3-распада. При этом избыточный нейтрон превращается в протон и заряд ядра увеличивается на единицу — исходный химический элемент превращается в следующий. Это упрощённое описание даёт общее представление о схеме образования новых химических элементов при нейтронном облучении. В действительности ядерные характеристики изотопов ТУЭ определяют более широкую палитру конкурирующих ядерных превращений, среди которых можно назвать электронный захват (превращение протона ядра в нейтрон), различные изомерные переходы, а также характерные только для тяжёлых ядер а-распад и спонтанное деление. Важно отметить, что для того, чтобы пройти путь от 238рц 252(2 необходимо осуществить последовательность ядерных реакций, которая должна включать 14 нейтронных захватов. Чтобы провести этот процесс в разумное время и при этом накопить весовое количество целевых радионуклидов, необходимо обеспечить очень высокую плотность потока нейтронов в объёме облучаемого материала. Значения тепловых сечений и резонансных интегралов некоторых изотопов ТПЭ [4] приведены в табл. 9.1.2. [c.507]


    Периоды полураспада короткоживущих изотопов равны — 5570 лет, 26А1 - 7,4 10 лет, 1°Ве - 2,5 10 лет, Збс1 - 3 10 лет, 2Юрь 21,4 года. При измерении возраста минералов рассматриваются некоторые естественные ядерные превращения /3-распад, электронный захват, а-распад, и спонтанное осколочное деление тяжёлых ядер. При /3-распаде превращение атомов химических элементов определяется правилом сдвига образующийся при распаде элемент занимает в периодической таблице клетку вправо от начального /3-активного элемента. /5-распад можно рассматривать как распад одного ядерного нейтрона на протон и электрон (плюс нейтрино). Явление электронного захвата как бы противоположно -распаду. Оно заключается в самопроизвольном поглощении орбитального электрона ядром атома, причём обычно происходит поглощение электрона ядром атома с ближайшей К-оболочки. Поэтому данный процесс называют К-захватом. При электронном захвате атомный номер элемента уменьшается на единицу и новый элемент займёт место на одну клетку левее в периодической таблице. Среди изотопов существуют такие, которые одновременно испытывают и 5-распад и К-захват. К таким элементам относится например К (Мейер, Ваганов, 1985). [c.559]

    Было известно, что радиоактивный распад сопровождается либо так называемым альфа-излучением , когда вылетают тяжёлые частицы (ядра атомов гелия), несущие два поло кительных заряда и обладающие массой, равной 4 атомным единицам либо так называемым бэта-излучением , когда вылетают лёгкие частицы (электроны), обладающиеничтожно малой массой и одним отрицательным зарядом. Когда все радиоактивные элементы были помещены в таблицу Менделеева, то оказалось, что при любом альфа-излучении всегда происходит как бы сдвиг на два места влево от исходного радиоактивного элемента, [c.22]

    Ядра атомов состоят из примерно одинакового числа протонов и нейтронов, так что атомный вес, который определяется суммой тех и других, приблизительно вдвое больше порядкового номера элемента. Правильнее было бы сказать, что ядро состоит из определённого числа тяжёлых частиц, между которыми распределено примерно половинное число положительных зарядов. Можно ли внутри ядра различать протоны и нехттроны — неизвестно. [c.90]

    Захватывая нейтрон по реакции (п,7), ядро-мишень (в данном случае — изотопы плутония) увеличивает свою атомную массу на единицу, превращаясь в следующий изотоп того же элемента. Так продолжается до тех пор, пока очередь не дойдёт до такого изотопа, избыточное количество нейтронов в ядре которого определит энергетическую необходимость ядерного превращения путём /5-распада. При этом избыточный нейтрон превращается в протон и заряд ядра увеличивается на единицу — исходный химический элемент превращается в следующий. Это упрощённое описание даёт общее представление о схеме образования новых химических элементов при нейтронном облучении. В действительности ядерные характеристики изотопов ТУЭ определяют более широкую палитру конкурирующих ядерных превращений, среди которых можно назвать электронный захват (превращение протона ядра в нейтрон), различные изомерные переходы, а также характерные только для тяжёлых ядер ск-распад и спонтанное деление. Важно отметить, что для того, чтобы пройти путь от 252qj необходимо осуществить [c.507]


Смотреть страницы где упоминается термин Атомное ядро тяжелые: [c.40]    [c.98]    [c.10]    [c.97]    [c.40]    [c.98]   
Основы общей химии Том 2 Издание 3 (1973) -- [ c.575 ]




ПОИСК





Смотрите так же термины и статьи:

Атомное ядро



© 2024 chem21.info Реклама на сайте