Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Атомное ядро форма

    В 1912 г. Генри Мозли (1887-1915) обнаружил, что частота рентгеновского излучения, испускаемого элементами при бомбардировке электронным пучком, лучше коррелирует с их порядковыми номерами, чем с атомными массами. Закономерная взаимосвязь между порядковым номером элемента и частотой (или энергией) рентгеновских лучей, испускаемых элементом, определяется внутриатомным строением элементов. Как мы узнаем из гл. 8, электроны внутри атома располагаются по энергетическим уровням. Когда элемент бомбардируется мощным пучком электронов, атомные электроны, находящиеся на самых глубоких энергетических уровнях, или, иначе, электроны из самых внутренних оболочек (ближайших к ядру), могут вырываться из атомов. Когда внешние электроны переходят со своих оболочек на образовавшиеся вакансии, атомы излучают энергию в форме рентгеновских лучей. Рентгеновский спектр элемента (набор частот испускаемого рентгеновского излучения) содержит в себе информацию об электронных энергетических уровнях его атомов. В настоящий момент для нас важно то, что эта энергия зависит от заряда ядра атома. Чем больше заряд атомного ядра, тем прочнее связаны с ним самые внутренние электроны атома. Тем большая энергия требуется для выбивания из атомов этих электронов и, следовательно, тем большая энергия испускается, когда внешний электрон переходит на вакансию во внутренней электронной оболочке. Мозли установил, что частота испускаемого при этом рентгеновского излучения (ее обозначают греческой буквой ню , V) связана с порядковым номером элемента Z соотношением [c.311]


    ПЕРИОДИЧЕСКАЯ СИСТЕМА ЭЛЕМЕНТОВ Д. И. МЕНДЕЛЕЕВА — естественная система химических элементов, созданная гениальным русским химиком Д. И. Менделеевым. Расположив элементы в последовательности возрастания атомных масс и сгруппировав элементы с аналогичными свойствами, Д. И. Менделеев составил таблицу элементов, закономерности которой теоретически вытекают из сформулированного им периодического закона Физические и химические свойства элементов, проявляющиеся в свойствах простых и сложных тел, ими образуемых, находятся в периодической зависимости от их атомного веса (1869—1871 гг.). Периодический закон и периодическая система элементов Д. И. Менделеева позволяют установить свя ь между всеми химическими элементами, предсказать существование ранее неизвестных элементов и описать их свойства. Как впоследствии стало известно, периодичность в изменении свойств элементов обусловлена числом электронов в атоме, электронной структурой атома, периодически изменяющейся по мере возрастания числа электронов. Число электронов равно положительному заряду атомного ядра это число равно порядковому (атомному) номеру элемента в периодической системе элементов Д. И. Менделеева. Отсюда современная формулировка периодического закона Свойства элементов, а также свойства образованных ими простых и сложных соединений находятся в периодической зависимости от величины зарядов их атомных ядер (2) . Поскольку атомные массы элементов, как правило, возрастают в той же последовательности, что и заряды атомных ядер, современная форма таблицы периодической системы элементов полностью совпадает с менделеевской, где аргон, кобальт, теллур расположены не в порядке возрастания атомной массы, а на основе их химических свойств. Это несоответствие рассматривалось противниками Д. И. Менделеева как недостаток его системы, но, как позже было доказано, закономерность нарушается в связи с изотопным составом элементов, что также предвидел Д. И. Менделеев. Периодический закон и периодическая система элементов [c.188]

    Измерение ядерного магнитного резонанса (ЯМР) — метод анализа, основанный на резонансном поглощении электромагнитных волн веществом, помещенным в постоянное магнитное поле. Ядерный магнитный резонанс использует явление ядерного магнетизма. Атомные ядра многих химических элементов имеют определенный момент количества движения, т. е. вращаются вокруг собственной оси (спин ядра). Спин ядра аналогичен спину электрона. Магнитный момент возникает потому, что каждое ядро имеет электрический заряд. Для наблюдения ЯМР ампулу, содержащую анализируемое вещество, помещают в катушку радиочастотного генератора. Образец может быть жидким, твердым или газообразным. Катушку с ампулой помещают в зазоре магнита перпендикулярно направлению магнитного поля Ни- Генератор создает на катушке слабое переменное магнитное поле Нх- Резонанс наступает при условии ф=фо= У о, где ф — скорость вращающегося поля Нх, фо — скорость прецессии ядер в поле На, 7 — гиромагнитное отношение у = т1Р (т — магнитный момент ядра атома, Р — момент количества движения ядра). При выполнении условия приемник регистрирует небольшое изменение напряжения на рабочем контуре в виде сигнала в форме гауссовой кривой. Кривая характеризуется высотой сигнала и шириной кривой (полосы), [c.452]

    Материя как объективная реальность существует в двух формах вещество и поле. Обе формы находятся в тесной связи, проявляя в своих взаимопревращениях те глубокие внутренние противоречия, которые являются обязательным атрибутом всякого объективного существования. Веществом называют ту форму существования материи, в которой она проявляет себя прежде всего в виде частиц, имеющих собственную массу (масса покоя). Это материя на разных стадиях ее организации так называемые элементарные частицы (электроны, протоны, нейтроны), атомные ядра, атомы, молекулы, агрегаты молекул (кристаллы, жидкости, газы), минералы, горные породы, растительные ткани и т. д. Поле (гравитационное, электромагнитное, внутриядерных сил) — это форма существования материи, которая характеризуется и проявляется прежде всего энергией, а не массой, хотя и обладает последней. [c.5]


    Если атомное ядро имеет несферическую форму, то оно обладает электрическим квадрупольным моментом, значение которого показывает, насколько велика несферичность. Теория свидетельствует [c.229]

    Структурный символ ядра атома изотопа. Заряд и масса являются важнейшими свойствами атомного ядра, определяющими его индивидуальность. Для того чтобы в краткой форме представить [c.21]

    На рис. 5.3 схематически изображено образование молекул Оа, Н2О и N3. Видно, что в молекуле Оа облака одной пары валентных 2/7-электронов перекрываются в направлении, соединяющем ядра атомов, образуя а-связь. Облака другой пары 2/7-электронов ориентированы параллельно и перекрываются в стороне от оси, соединяющей атомные ядра, образуя я-связь. Эти связи неравноценны. л-Связь слабее, чем (Т-связь. Общая энергия связи в молекуле О составляет 494 кДж/моль. Соединяя атом кислорода с двумя атомами водорода, получаем молекулу воды. Присоединение атомов Н к атомам О произойдет вдоль направления восьмерок, в результате чего возникает треугольная форма молекулы НаО. Действие сил отталкивания между атомами водорода [c.121]

    Такое уравнение можно было бы решить описанным выше приближенным способом Чтобы построить некоторую приближенную волновую функцию, будем рассуждать следующим образом Молекула водорода образуется в результате объединения двух атомов водорода, электроны которых находятся в основных Ь-состояниях Пусть два атома водорода находятся друг от друга на достаточно больших расстояниях, когда их взаимодействия еще малы Тогда около каждого атома будет свое электронное облако, плотность которого будет определяться квадратом функции V)/, центрированной на первом или втором атомных ядрах Общее распределение электронной плотности в пространстве, охватывающем два атома, можно передать квадратом волновой функции V)/= ц/, где и — сферические атомные Ь-волновые функции, центрированные на первом и втором ядрах Такая форма волновой фушщии удовлетворяет тому условию, что, когда рассматривается область около [c.55]

    Сигналы ЯМР можно получить только на ядрах, обладающих ядерным угловым моментом Р и магнитным моментом В соответствии с классическими представлениями, предполагается, что атомные ядра, имеющие сферическую форму, вращаются вокруг оси (рис. 9.3-2). Величина углового момента Р вычисляется по уравнению 9.3-1. [c.203]

    Н, из атомов водорода. Каждый водородный атом имеет один электрон, который занимает 15-орбиталь. Как уже говорилось, эта 15-орбиталь имеет форму шара с атомным ядром в центре. Для образования связи два ядра должны быть сближены настолько, чтобы могло произойти перекрывание атомных орбиталей (рис. 1.3). Для водорода система наиболее стабильна в том случае, когда расстояние между ядрами составляет 0,74 А (7,4-10 нм) это расстояние называется длиной связи. При этом расстоянии стабилизующий эффект перекрывания точно уравновешен отталкиванием между одинаково заряжен- [c.17]

    Для максимального перекрывания орбиталей и, следовательно, максимально прочной связи атомы водорода должны находиться в трех углах тетраэдра четвертый угол занят свободной парой электронов. Если рассматривать только атомные ядра, то следует ожидать, что молекула аммиака будет иметь форму трехгранной пирамиды с азотом в вершине и атомами водорода в углах основания. Каждый угол связи должен быть тетраэдрическим и равным 109,5° (1,911 рад). [c.22]

    Распределение электронов обеих связей — углерод-водородной и угле-род-углеродной — одинаково и имеет цилиндрическую симметрию относительно линии, связывающей атомные ядра (рис. 4.1) благодаря такому сходству по форме связи имеют одинаковое название — о-связи (сигма-связи). [c.94]

    До сих пор мы представляли себе ионы несжимаемыми шарами, причем считали, что центр тяжести отрицательного заряда совпадает с центром тяжести положительного заряда атомного ядра. В действительности такое представление справедливо лишь в первом приближении. Если ион будет находиться в электрическом поле, то центры тяжести противоположных электрических зарядов разойдутся, образуя диполь. Форма иона, следовательно, отклоняется от шаровой. Дипольный момент fi пропорционален напряженности поля Е и измеряется произведением сдвигаемого заряда Ze на дипольное расстояние d между центрами зарядов ц = аЕ = Zed. Коэффициент пропорциональности а называется коэффициентом деформируемости иона, или поляризуемостью. Его величина приблизительно постоянна для данного иона во всех структурах. Ниже приведены значения а - [c.144]

    Третья форма — интенсивно мигрирующие, летящие с громадной скоростью атомные ядра и элементарные частицы, составляющие космические лучи. [c.68]

    Внешним по отношению к атомному ядру магнитным полем называют магнитное поле, создаваемое постоянным магнитом (внешняя компонента магнитного поля), а также магнитное поле, обусловленное взаимодействием ядра с окружающей его системой электронов (внутренняя компонента магнитного поля). Внутренняя магнитная компонента связана с химической природой атомов, окружающих данный атом. Так, например, свободные электроны металлов (гл. 3, разд. 6) обусловливают появление парамагнетизма, который приводит к повышению резонансной частоты переменного поля (при фиксированном внешнем поле) — так называемый сдвиг Найта, который является важным методом исследования состояний свободных электронов в металлах. Кроме того, по форме спектров ЯМР, даваемых определенными атомными ядрами твердых тел, получают информацию о состоянии атомных ядер в кристалле (спектры низкого разрешения). С другой стороны, спектры ЯМР атомов, входящих в состав некоторых молекул, снятые в жидкости или растворе, отражают состояние этих атомов в молекулах, например водороды метильных групп или водороды [c.51]

    Ядерный квадрупольный момент. Разнообразные переходы между энергетическими уровнями, связанные с вращательным движением молекул, проявляются в далекой инфракрасной области (в интервале длин волн 30 нм — 1 мм), при этом у соединений некоторых элементов в далеких инфракрасных спектрах поглощения наблюдаются группы линий с очень небольшим расщеплением (тонкая структура). У нуклидов с ядерным спином, равным 1 и более, из-за деформации ядра электрические заряды распределяются неравномерно — образуется электрический квадруполь. Атомные ядра принимают форму, приближающуюся к эллипсоиду вращения, обозначаемому знаком плюс, если на большой оси расположен положительный заряд, а на малой — отрицательный, и знаком минус, если на большой оси заряд отрицательный, а на малой — положительный. Величина -этих зарядов выражается через электрический заряд электрона и площадь поверхности ядра и составляет в этих единицах 10-26—10-2 e/ м . Вблизи от значений магических чисел нейтронов и протонов эта величина крайне мала, по мере отдаления от них она возрастает по модулю, оставаясь положительной до достижения магического числа и отрицательной — лосле него. [c.52]

    КОНФИГУРАЦИЯ РАВНОВЕСНАЯ, расположение атомных ядер молекулы (или радикала, иона) в пространстве, соответствующее минимуму ее потенц. энергии. К. р. двухатомной молекулы характеризуется расстоянием между атомными ядрами. Для описания К. р. многоатомных молекул необходимо исппльловат] такие параметры, как длины связей, валентные углы, а также двугранные углы (см. Номенклатура стереохимическая). К. р. молекулы зависит от ее электронного состояния. Так, в оси. состоянии молекула ацетилена имеет линейную конфигурацию, в возбужденном — трансоидную. Параметры молекулы (или ее геометрию) определяют методами рентгеновского структурного анализа, газовой электронографии, микроволновой спектроскопии, нейтронографии и др., а в случае простых молекул также рассчитывают квантовомех. методами. КОНФОРМАЦИИ молекул, различные пространств, формы молекулы, возникающие при изменении относит, ориентации отд. ее частей в результате виутр. вращения атомов или групп атомов вокруг простых ( вя 1еп, изгиба связей и др. При этом стереохим. конфигурация молекулы остается неизменной. Каждой К. соответствует определ. энергия. Так, для молекулы зтана можно представить существование двух максимально ра )личающихся по энергии К.— 1аслоненной (ф-ла la), для к-рой диэдральный угол Ф (см. Номенклатура стереохимическая) имеет значения О, 2, 4, и. заторможенной, или шахматной ([б), с ф = 1, 3, 3. Первой из них соответствует максимум энергии, второй — минимум. Поэтому молекулы этана существуют практически только в заторможенной К. [c.274]


    Понятие твердого тела, т. е. системы, внутреннее состояние которой (форма, равновесные положения частиц и т. д.) не меняется, является идеализацией, отражающей свойства некоторых систем вести себя как твердое тело при малых внешних возмущениях. Эта возможность есть проявление квантовых свойств систем если энергия внешнего воздействия меньше энергии возбуждения первого внутреннего состояния системы, то система будет находиться в основном состоянии. К таким системам относятся, например, молекулы и атомные ядра. [c.204]

    Большинство ядер обладает моментом количества движения, максимальная составляюш,ая которого вдоль определенной оси является, согласно принципам квантовой механики, целым или полуцелым кратным основной единице момента количества движения Ь (константа Планка, деленная на 2тг). Это целое или полуцелое число и есть ядерный спин /. Так как атомные ядра построены из заряженных частиц, то имеется магнитный момент ц, обусловленный частицами с неравным нулю спиновым моментом количества движения. Как момент количества движения, так и магнитный момент являются векторами, и можно показать в общем виде [43], что они линейно связаны скалярной величиной, называемой гиромагнитным отношением у, записываемым в форме [c.13]

    Атомные ядра передают информацию на регистрирующее устройство (спектрометр), которое аккумулирует информацию в основном в форме спектра. В спектре информация содержится лишь в зашифрованном виде, и далее необходимо с помощью спектрального анализа выразить ее в форме соответствующих параметров (рис. 6). [c.18]

    Рассмотрим простейший случай, когда орбиты, по которым вращаются электроны, имеют форму окружности. Вычисление показывает, что радиусы стационарных орбит, т. е. орбит, отвечающих стационарным состояниям атома, должны быть пропорциональны квадратам целых чисел. Положим, что радиус наименьшей орбиты равен единице. Тогда радиус следующей орбиты равен 4 (т. е. 2 ), радиусы последующих орбит равны 9 (т. е. 3 ), 16 (т. е. 4 ) и т. д. Только по таким орбитам может вращаться электрон вокруг атомного ядра. Он может перескочить с одной орбиты на другую, но не может вращаться по орбите любого другого радиуса. Те целые числа (1, 2, 3 и т. д.), которые характеризуют стационарные орбиты атома, называются квантовыми числами. [c.73]

    Рассеяние света молекулой как в форме релеевского рассеяния, так и в форме излучения комбинационного рассеяния основано на том, что колеблющееся Электрическое поле падающего светового луча, воздействуя на электроны, вызывает периодически изменяющийся электрический момент молекулы. Амплитуда колебания этого электрического момента тем больше, чем больше поляризуемость облучаемой молекулы. Более точная теория показывает, что интенсивность обычного рассеянного света зависит, помимо интенсивности облучающего света, только от поляризуемости облучаемой молекулы, а на интенсивность излучения комбинационного рассеяния, кроме интенсивности облучающего света, влияет изменение, которое испытывает поляризуемость вследствие непостоянства расстояний между атомными ядрами. Если на поляризуемость практически не влияют колебания ядер, так как электронное облако, окружающее одно ядро, только очень слабо воздействует на другое, то излучение комбинационного рассеяния может не обладать заметной интенсивностью. Сильное взаимное влияние электронных облаков всегда проявляется в тех случаях, когда атомы, участвующие в создании молекулы, имеют общие электроны. Поэтому спектры комбина- [c.345]

    Помимо магнитного момента атомные ядра обладают ещё и заметными электрическими моментами, зависящими от распределения заряда в ядре. Дипольные электрические моменты у ядер отсутствуют, однако из-за нарушения сферической симметрии распределения зарядов у многих ядер возникает квадрупольный момент Q. Особенно он велик у тяжёлых ядер, имеющих сильно вытянутую форму. Вместе с тем ядра с Z = N = А/2 (стабильные [c.23]

    Амплитуда колебаний атомных ядер во много раз (пропорцжо-нально квадратному корню из отнощения масс) меньше, чем электронов. Поэтому атомные ядра, принадлежащие данной молекуле, вместе со всеми своими электронами, кроме валентных (т. е. атомные остовы), связанные направленными межатомными связями, представляют собой довольно резко локализованный остов молекулы. Понятно, что форма молекулы зависит от строения остова, которое в свою очередь определяется характером межатомных связей, их направлением. Но, как мы знаем, направление межатомных связей задается той или иной комбинацией атомных орбита-лей, т. е. пространственной конфигурацией соответствующих электронных волновых функций, связанной с симметрией поля сил между атомным ядром и электронами, Так, в результате коаксиальной -гибридизации трехатомные молекулы галогенидов элементов И группы в газообразном состоянии имеют остов линейной формы. Четырехатомные молекулы, например ВРз, благодаря 5р2-гибридизации приобретают остов, в котором все соединяющие атомные остовы три связи располагаются в одной плоскости под углом 120° друг к другу. Тетраэдрическое строение остова пятиатомных молекул типа СН4 и ССЦ обусловлено р -гибридизацией к такой же конфигурации остова молекул приводит х -гибриди-зация.. Существуют также октаэдрическая ( р -гибридизация, плоская квадратная 5/7 -гибридизация, тригональная бипирами-дальная ( 5,о -гибридизация, каадратная пирамидальная 5р -гиб-ридизация и др. [c.84]

    Атом элемента представляет собой одну из важнейших микрочастиц. Первые исследователи ее строения (Н.Бор, А. Зоммерфельд, 1912, 1913) положили в основу внутриатомной энергетики представления теории квант. Электромагнитное поле атомного ядра квантовано, т. е. имеет дискретное строение в самой природе структуры атома заложены определенные энергетические уровни. В соответствии с ними электрон, рассматриваемый как частица, согласно теории Бора, движется вокруг ядра по круговым или эллиптическим орбитам, напоминая движение планет вокруг Солнца. Так возникла планетарная модель атома. Форма траекторий-орбит и их расстояние от ядра рассматривались как фактор, определяющий энергетическое состояние электрона. Энергетические уровни обозначались как главные кванто- [c.31]

    Если два атома взаимодействуют друг с другом так, что атомная орбита одного достаточно перекрывается с атомной орбитой другого, то две атомные орбиты заменяются молекулярной орбитой (орбита связи), энергия которой ниже, чем энергия атомных орбит. Такая орбита связи [<т (сигма)-орбита] имеет приблизительно яйцевидную форму (рис. 4). Она симметрична относительно оси, связывающей два атомных ядра. Химическая связь, образованная о-орбитой, называется а-связью. [c.27]

    Итак, — пишет Пальм, — упрощение моделей приводит к усложнению математической формы зависимости. Выбрав какие-то конкретные модели, мы тем самым автоматически установили математическую форму тех зависимостей, которыми следует пользоваться. Выбрав, скажем, нерелятивистский электрон и атомные ядра, мы ужо не можем избегать волнового уравнения и всех сопряженных с его решением трудностей. Но обязательно ли нам выбирать для решения задач из области химии именно эти и только эти модели  [c.331]

    В первом приближении атомное ядро сравнивают с каплей жидкости. Действительно, на основе капельной модели атомного ядра удается объяснить целый ряд явлений, которые наблюдаются в нем. Если две очень маленькие капли сталкиваются, то они образуют одну большую каплю и при этом освобождается энергия. В каплях действуют силы притяжения Ван-дер-Ваальса, в ядрах — ядерные силы. Как у капли, так и у ядра существует сила поверхностного натяжения. И капля, и ядро стремятся принять форму шара. Но существует также и различие между ядерной материей и жидкостью. Тогда как жидкость состоит из электрически нейтральных частиц, в атомном ядре наряду с нейтронами имеются и электрически заряженные протоны, а следовательно, и расталкивающие силы. [c.25]

    При / = 0 гп1 также равно 0 в этом случае возможна только одна 15-орбиталь, имеющая щарообразную форму. В центре этой сферы расположено ядро атома. Эта орбиталь не имеет четкой границы, так как существует определенная вероятность обнаружения электронов даже на значительном расстоянии от атомного ядра (рис. 1). Ь-Орбиталь имеет меньшую по сравнению с другими орбиталями энергию. 25-Орбиталь представляет собой сферу с ядром в центре, но по размерам больше 15-орбитали. Она имеет и более высокую энергию. [c.13]

    Если атомное ядро имеет не ферическую форму, то оно обладает электрическим [c.277]

    Радиус, пм Ре 82, Ре " 67, атомный (а-форма) 124,1, ковалентный 116,5 Электроотрицательносгь 1,83 (по Полингу), 1,64 (по Оллреду), 4,06 эВ (абсолютная) Эффективный заряд ядра 3.75 (по Слейтеру), 5,43 (по К/ементи), 7,40 (по Фрезе-Фишеру) Стандартный потенциал восстановления Е°, В [c.64]

    Для отражения динамики атомов в К. с. в гармонич. приближении атомы изображают в виде тепловых эллипсоидов . к-рые имеют след. физ. смысл с фиксир. вероятностью р в любой момент времени атомное ядро находится внутри или иа пов-сти такого эллипсоида (рис. 1). Направление наиб, вытянутости эллипсоида соответствует направлению, в к-ром атом совершает максимальные по амплитуде колебания, направление наиб, сжатия соответствует минимальным по размаху колебаниям. Обычно производят нормировку на вероятность р = /г- При данной р размеры эллипсоидов зависят от т-ры. Чтобы количественно охарактеризовать форму и ориентацию атомных тепловых эллипсоидов, для каждого атома указывают 6 независимых компонентов симметричного тензора 2-го ранга, значения к-рых определяют по данным рентгеноструктурного исследования. Описанная дииамич. модель не дает сведений о мгновенной структуре кристалла и о последоват, смене мгновенных структур. Информацию такого рода можио получить из спектров неупругого рассеяния нейтронов. [c.532]

    Для исследования строения электронных оболочек атомов и молекул используют резонансное испускание и поглощение у-квантов атомными ядрами в твердых телах без потери части энергии на отдачу адра (см. Мёссбауэровская спектроскопия). Измеряя интенсивность прошедшего через поглотитель у-из-лучения в зависимости от скорости перемещения источника излучения (или поглощения), получают мёссбауэровский спектр, характеристиками к-рого являются положение линий, их число, относит, интенсивность, форма и площадь. Зависимость вероятности эффекта Мёссбауэра от т-ры и давления используют для установления координац. чисел, наблюдения фазовых переходов, определения дефектов в кристаллич. решетках, возникающих вследствие радиац. повреждений, [c.512]

    Атом — наименьшая электронейтральная частица химического элемента, являющаяся носителем епз свойств. Каждому химическому элементу соответствует определенный вид атомов. А. состоит из ядра и электронной оболочки. Масса А. сосредоточена в ядре, которое характеризуется положительным зарядом, численно равным порядковому номеру (атомному номеру). См. Ядро апюшюв. А. в целом электронейтра-лен, поскольку положительный заряд ядра компенсируетт я таким же числом электронов. См. Электрон. Электроны могут занимать в атоме положения, которым отвечают определенные (квантовые) энергетические состояния, называемые энергетическими уровнями. Число энергетических уровней определяется номером периода, в котором находится данный элемент. Число электронов, которые могут заселять данный энергетический уровень, определяется ло формуле N = 2п , щеп — номер уровня, считая от ядра. т.е. главное квантовое число. Согласно квантовой теории невозможно одновременно и абсолютно точно определить энергию и местоположение электрона. Можно лишь говорить о нахождении электрона в определенном объеме пространства, что собственно и представляет собой атомную орбиталь (АО). Электрон заполняет пространство вокруг атомного ядра в форме стоячей волны, которую можно представить как электронное облако. Плотность электронного облака, понимаемого как облако электрического заряда электрона, — электронная плотность, различна и зависит от того, насколько электрон удален от ядра. [c.38]

    Обоснование орбитальной модели атома, исходящее из волнового характера электрона, состоит в следующем. Электрон заполняет пространство вокруг атомного ядра в форме стоячей волны, которую наглядно можно представить как электронное облако. Отрицательный заряд электрона оказывается неравномерно распределенным во всем объеме пространства вокруг атомного ядра (электрон как бы размазан или делокализован в этом объеме). Плотность электронного облака, понимаемого как облако электрического заряда электрона, — алекгрокмая плотность окажется различной и зависящей от расстояния ядро — электрон. Графическое изображение распределения плотности заряда электрона в атоме водорода от расстояния аналогично тому, какое показано на рис. 9, с той лишь разницей, что на ординате следует ука-вать значения электронной плотности. При ограничении электронной плотности до значения 90 % получается та же орбитальная модель атома. [c.87]

    Существование одного и того же элемента в виде атомов с различными массами подозревали ранее, поскольку было найдено, что многие пары радиоактивных элементов не разделяются обычными химическими методами. Предполагалось, что эти пары не будут различаться спектроскопически. Содди [1905J назвал такие различные по радиоактивности формы данного элемента изотопами, поскольку они занимают одно и то же место в периодической системе элемен-тов. Предполагалось также, что могут существовать и изотопы стабильных элементов и что неидентифицированный ион, обнаруженный Томсоном, представляет собой тяжелый изотоп неона. После того как в 1919 г. Астон окончательно доказал существование двух изотопных форм неона, теория существования изотопов, вытекающая из теории атомного ядра Резерфорда [1752], оказала большое влияние на дальнейшее формирование теории строения ядра. Содди [1906] считал, что изотопы обладают совершенно идентичными физическими свойствами, различие сохраняется лишь в отношении сравнительно немногих свойств, непосредственно связанных с массой атома . Такие же величины, как константы равновесия и скорости химических реакций молекул, содержащих различные изотопы, различаются очень незначительно. Со,зди предвидел, что для многих легких элементов, как, например, магния, хлора, атомные веса которых заметно отличаются от целых чисел (24,3 и 35,5 с(ютветственно), будет характерно наличие нескольких распространенных стабильных изотопов. [c.14]

    Рассматривая фотодиссоциацию, мы уже убедились в том. что легкоподвижные электроны успевают возбуждаться так быстро, что малоподвижные по сравнению с ними атомные ядра не успевают перестраивать одновременно с ними свое взаимное расположение и вынуждены приспосабливаться к новому распределению молекулярных электронов уже после того, как последнее закончилось. Электрон как бы вездесущ в атоме с точки зрения более инертных в своем движении ядер, и последним, в сущности, приходится двигаться в молекуле, образно выражаясь, как бы сквозь облака, создаваемые тенью быстро бегущих по самым разнообразным набавлениям электронов. Облако , в которое как бы расплывается вокруг ядер каждый быстро бегущий электрон, имеет определенные электронные плотности в отдельных точках, а также е№цифи-ческую форму и объем. [c.176]


Смотреть страницы где упоминается термин Атомное ядро форма: [c.14]    [c.335]    [c.277]    [c.12]    [c.201]    [c.158]    [c.72]    [c.470]    [c.505]    [c.13]    [c.24]   
Основы общей химии Том 2 Издание 3 (1973) -- [ c.555 ]




ПОИСК





Смотрите так же термины и статьи:

Атомное ядро



© 2025 chem21.info Реклама на сайте