Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ванадий аналоги

    Устойчивые координационные числа ванадия и его аналогов, отвечающие соответствующим степеням окисления, приведены в табл. 47. [c.539]

    Элементы подгруппы ванадия. Ванадий V и его электронные аналоги — ниобий ЫЬ, тантал Та и недавно синтезированный 105-й элемент нильсборий N5 являются элементами побочной подгруппы пятой группы периодической системы элементов Д. И. Менделеева. Электронная структура их атомов выражается формулой. .. п — где п — номер внешнего слоя, совпадающий с номером [c.285]

    Для ванадия и его аналогов наиболее типичны соединения, в которых их степень окисленности равна -(-5. Их высшие оксиды проявляют свойства кислотных оксидов и образуют, соответственно, ванадиевую, ниобиевую и танталовую кислоты, которым отвечает ряд солей. Низшие оксиды обладают основными свойствами. [c.651]


    При возбуждении атома внешние электроны распариваются, поэтому ванадий и его аналоги могут проявлять валентность, равную двум. Для этих элементов возможны также трех- и четырехвалентные состояния, но более характерным является пятивалентное состояние, отвечающее максимальному числу неспаренных электронов на валентных энергетических подуровнях  [c.318]

    Характер взаимодействия титана и его аналогов с металлами зависит от положения последних в периодической системе. Так, с близкими к нему по свойствам хромом и ванадием титан образует непрерывный ряд твердых растворов замещения  [c.532]

    Интерметаллические соединения ванадия и его аналогов придают сплавам ценные физико-химические свойства. Так, ванадий резко повышает прочность, вязкость и износоустойчивость стали. Ниобий придает сталям повышенную коррозионную стойкость и жаропрочность. В связи с этим большая часть добываемого ванадия и ниобия используется в металлургии для изготовления инструментальной и конструкционной стали. [c.439]

    Дпя ванадия (V) и его аналогов весьма характерны пероксо-комплексы типа желтого [ 02(02)2 , сине-фиолетового [ (02)4 и бесцветных INb(02)4J и [Та(02)4] . По строению 0(02)4] представляют собой додекаэдр (см. рис. 223). [c.547]

    Существенным недостатком обычного варианта периодической системы являлось то обстоятельство, что в нем не была выявлена связь между типическими элементами каждой группы и членами ее левой и правой подгрупп. Так, из системы вытекало, что, например, в V группе сурьма является аналогом мышьяка, ниобий — аналогом ванадия и фосфор — аналогом азота. Оставалось, однако, неясным, в каком отношении к фосфору стоят ванадий и мышьяк. [c.222]

    Накопленные к настоящему времени сведения позволяют лишь в самом общем виде систематизировать типы связей элементов с нефтяными соединениями. Материалы оригинальных работ очень редко содержат сколько-нибудь убедительные доказательства химической структуры микроэлементных соединений. Зачастую такого рода сведения базируются на аналогиях с известными классами синтетических соединений того или иного элемента, а выводы авторов о структуре нефтяных соединений носят характер предположений. До сих пор достоверно не выяснена точная химическая структура ни одного содержащего микроэлемент нефтяного вещества, за исключением порфириновых комплексов ванадил а и никеля. Заключение о типе микроэлементного соединения [c.161]

    Гидриды ванадия и его аналогов ЭН — хрупкие металлоподобные порошки серого или черного цвета. Обычно в их кристаллах не все узлы кристаллической решетки, соответствующей атомам водорода, заняты, поэтому гидриды имеют переменный состав. Гидриды химически устойчивы, не взаимодействуют с водой и разбавленными кислотами. [c.438]

    При образовании некоторых, сульфидов и их аналогов (например, щелочных и щелочноземельных металлов, магния, цинка) выделяется много теплоты, реакция протекает очень бурно, и ампула, особенно стеклянная, разрушается. Поэтому металл следует брать не в виде тонкого порошка, а в виде стружки, мелких гранул или крупки. Щелочные и щелочноземельные металлы и некоторые другие разрушают стекло и загрязняют продукты реакции соединениями кремния. Поэтому их сульфиды получать таким способом нельзя. Этим методом можно получать сульфиды, селениды элементов подгруппы железа, хрома, ванадия, титана, галлия, а также меди, серебра, марганца. В тех случаях, когда вещество пе плавится, обычно после 1—2-часового нагревания прп температуре, рекомендованной в прописях, оно будет неоднородно по составу. Рекомендуется ампулу разбить, вещество растереть в ступке, снова поместить в ампулу, запаять ее, а затем назревать в течение 2—3 ч (можно еще раз не нагревать, но тогда процесс должен длиться 10—15 ч). [c.47]


    При возбуждении атома внешние электроны распариваются поэтому ванадий и его аналоги могут проявлять валентность, равную двум. [c.285]

    Вертикальные столбцы называются группами тов. Каждая группа делится на две подгруппы (главную и побочную). Подгруппа-это совокупность элементов, являющихся безусловными химическими аналогами часто элементы подгруппы обладают высшей степенью окисления, отвечающей номеру группы. Например, элементам подгрупп бериллия и цинка (главная и побочная подгруппы II группы) отвечает высшая степень окисления (-ЬII), элементам подгруппы азота и ванадия (V группа)-высшая степень окисления (Ч-У). [c.34]

    Характерной способностью V(+3) является способность к образованию квасцов, чем он напоминает титан и хром в этой степени окисления. Здесь также проявляется горизонтальная аналогия между -элементами. В низших степенях окисления ванадий не прояв- ляет кислотных свойств и соответствующие гидроксиды являются типичными основаниями. Производные V(+2) и V (+3) обладают сильной восстановительной активностью. Так, оксид ванадия (+2) в отсутствие окислителей взаимодействует с водой подобно активному металлу, с выделением свободного водорода  [c.306]

    Простые вещества. Физические и химические свойства. В компактном состоянии все три элемента V—КЬ—Та представляют собой металлы светло-серого цвета, хорошо поддающиеся механической обработке в чистом состоянии. Все эти металлы характеризуются кристаллическими структурами с координационным числом 8 (ОЦК). Для металлов это сравнительно неплотная упаковка. В сочетании с более высокими температурами плавления элементов подгруппы ванадия по сравнению с титаном и его аналогами факт неплотной упаковки указывает иа возрастание ковалентного вклада в химическую связь. Это обусловлено увеличением числа иеспаренных электроиов на заполняющейся дефектной (п—1) -оболочке. Закономерность изменения параметров кристаллических решеток хорошо коррелирует с величинами атомных радиусов. [c.301]

    Периодическая система элементов Менделеева заканчивалась на 92 элементе — уране. Это был последний элемент в системе. Хотя Д. И. Менделеев указывал на возможность существования заурановых элементов, но в течение 70 лет (с 1869 по 1940 г.) не удалось открыть элементы с порядковыми номерами больше 92. Элементы доТЬ, д] Ра и ддУ размещались в системе Менделеева соответственно в IV, V и VI группах как аналоги элементов подгрупп титана, ванадия и хрома (табл. 90). [c.285]

    В другом случае однотипность структуры внешних оболочек распространяется лишь на некоторые отдельные валентности, и поэтому относящиеся сюда элементы могут быть названы неполными аналогами. Таковы, например, по отношению к фосфору ванадий и мышьяк  [c.234]

    По электронным структурам нейтральных атомов рассматриваемая группа может быть разделена на две подгруппы. Одна из них включает азот, фосфор, мышьяк и аналоги последнего, другая — ванадий и его аналоги. [c.382]

    Подобно элементам подгруппы хрома, ванадий и его аналоги характеризуются наличием во внешнем слое не более двух электронов, что обусловливает отсутствие тенденции к их дальнейшему присоединению. Вместе с тем можно ожидать, что в производных высшей валентности ванадий и его аналоги будут иметь значительное сходство с фосфором. [c.382]

    Наиболее типичны для ванадия и его аналогов производные пятивалентных элементов. Кроме того, известны соединения, отвечающие валентностям IV, III и II. При переходе по ряду V—НЬ—Та число [c.479]

    Как видно из рис. IX-64, в основном состоянии атом Nb отличается по строению внешних электронных оболочек от атомов V и Та, но переход к их структуре связан с затратой лишь 3 ккал/г-атом. Интересно, что образование d -оболочек (обычно характеризующихся повышенной устойчивостью) требует в рассматриваемых случаях довольно значительных энергий возбуждения. Последовательные энергии ионизации (эе) атомов ванадия и его аналогов приводятся ниже  [c.481]

    Титан и ванадий-элементы 1VB и VB подгрупп соответственно, относятся к семейству d- элементов. Строение внешних электронных оболочек (n-l)d s (для под-грушп.1 титана) и (n-l)d ns (для ванадия и его аналогов). Это обусловливает возможные степени окисления +2, +3, +4 для элементов IV В и +2, +3, +4, +5 для элементов V В подгруппы. [c.34]

    Из-за наличия во внешнем слое атомов лишь двух электронов, у титана и его аналогов отсутствует тенденция к дополнению внешнего слоя до октета. Вместе с тем по аналогии с подгруппами ванадия, хрома и марганца можно ожидать, что в производных своей высшей положительной валентности элементы подгруппы титана будут проявлять сходство с кремнием. [c.492]

    Основные методы получения этих металлов в свободном состоянии сводятся к карботермическому, металлотермическому, водородному восстановлению оксидов, галогенидов, комплексных галогенидов, электролизу расплавов солей. Предварительно руды, содержащие ванадий и его аналоги, обогащают, концентрируют, затем переводят в оксиды или галогениды и подвергают восстановлению  [c.301]

    Сам ванадий в отличие от своих аналогов реагирует с плавиковой кислотой, с кислотами, являющимися одновременно окислителями, и с царской водкой. Это обусловлено меньшей стабильностью высшей степени окисления ванадия в кислой среде. Ниобий и тантал вполне устойчивы не только в индивидуальных окисляющих кислотах, но даже и в царской водке. Таким образо.м, можно сделать вывод, что благородность металлов в кислых средах возрастает от ванадия к ниобию и танталу. Но при этом следует иметь в виду, что эта благородность относится только к нулевой степени окисления. [c.302]

    Г и д р и д ы ванадия и его аналогов ЭН — хрупкие металлоподобные порошки серого или черного цвета, имеют переменный состав. Гидриды химически устойчивы, не взаимодействуют с водой it разбаиленными кислотами. [c.541]

    Титан почти или совершенно не взаимодействует со щелочными, щелочноземельными и редкоземельными (кроме скандия) металлами, т. е. не образует с ними ни соединений, ни твердых растворов, С остальными металлами титан взаимодействует, однако характер этого взаимодействия с разными металлами различен металлы, яьл.чющиеся аналогами титана и ближайшими его соседями по периодической системе, а именно цирконий, гафний, скандии, ванадий, ниобий, тантал, а также молибден и вольфрам, не образуют с титаном соединений, [го образуют непрерывные ряды твердых растворов другие металлы дают с титаном интерметалличе-ские соединения и ограниченные твердые растворы. [c.263]

    Используя представления о кайносимметрии, можно выделить более тонкий вид электронной аналогии, так называемую слоевую аналогию (в дополнение к групповой и типовой аналогии). Слоевыми аналогами называют элементы, которые являются типовыми аналогами, но не имеют внешних или предвнешних кайносимметричных электронов. К таким аналогам относятся, например, в IA-группе К, Rb, s и Fr, а Li и Na не являются слоевыми аналогами с остальными щелочными металлами, поскольку у Li присутствует внешняя кайносимметричная 2р-оболочка (вакантная), а у Na кайносимметрнчная заполненная 2р-оболочка является предвнеш-ней. В ПА-группе слоевыми аналогами являются щелочно-земельные металлы (подгруппа кальция), а в П1А-группе — элементы подгруппы галлия и т. д. С точки зрения электронного строения слоевые аналоги являются между собой полными электронными аналогами. Поэтому рассматривать химические свойства элементов группы мы будет в такой последовательности первый типический элемент, второй типический элемент, остальные элементы главной подгруппы, элементы побочной подгруппы. Например, в И1 группе отдельно рассматриваются бор, алюминий, подгруппа галлия, подгруппа скандия в V группе — азот, фосфор, подгруппа мышьяка, подгруппа ванадия п т. п. [c.15]


    Для 5-элементов наиболее типичны простые вещества, имеющие кристаллы со структурой объемноцентрированного куба. Элел енты подгрупп скандия, титана, марганца, цинка и аналоги железа существуют в виде металлов с гексагональной решеткой простые вещества элементов подгрупп ванадия и хрома — в виде кристаллов с кубической объемноцентрированной решеткой, а простые вещества элементов подгрупп кобальта, никеля и меди — в виде металлов с решеткой гра-нецентрированного куба. Большинство 4/-элементов (лантаноидов) чаще всего образуют металлы с гексагональной структурой. [c.256]

    Высокой коррозионной стойкостью обладают также нитриды (ЭН, МЬаМ, ТааН), карбиды (ЭС, ЭаС), бор иды (ЭВ, ЭВг, Э3В4), ряд других соединений ванадия и его аналогов с неактивными неметаллами. [c.438]

    Для ванадия (V) и его аналогов весьма характерны пер оксокомплексы типа желтого 1У02(02)2]з , сине-фиолетового [ (02)4] и бесцветных [Nb(02)4] и [Та(02)4] -. По строению [3(02)4] представляют собой додекаэдр (см. рис. 218). [c.445]

    К побочной подгруппе пятой группы относятся ванадий V, ниобий ЙЬ и тантал Та. Эго типичные -элементъг, электронные аналоги, балентными являются (и—1)й з -электроны  [c.370]

    Ванадий, ниобий и тантал составляют VB группу периодической системы. В невозбужденном состоянии электронные группировки внешних энергетических уровней атомов этих элементов несколько отличаются друг от друга, а именно у атомов ванадия —3d4s , ниобия—4d 5s и тантала —5d 6s . Таким образом, в невозбужденном состоянии электронными аналогами являются только ванадий и тантал. В возбужденном состоянии, когда один из s-электро-нов ванадия и тантала переходит на другой подуровень, и все пять электронов внешних уровней становятся непарными, т. е. валентными, все три элемента являются электронными аналогами. Наличие на внешних электронных уровнях атомов только d- и s-электронов характеризует эти элементы как металлы. По внешнему виду это серые блестящие металлы с высокими температурами плавления и кипения, не изменяющиеся в воздухе. [c.238]

    Особенно хорошо известны комплексные металлат-ионы с кислородными лигандами (оксокомплексы). Их образуют преимущественно-металлы в высоких степенях окисления, например, ванадий (V), хром (VI), марганец (VII), а также их аналоги. Оксокомплексы получают при взаимодействии ковалентных оксидов соответствующих металлов (например, СЮз, МоОд, МпаО,), с отрицательно поля- [c.21]

    Как видно из приведенного сопоставления, мышьяк является структурным аналогом фосфора при валентностях —3, О и +3, но перестает быть им при валентности -1-5. С другой стороны, ванадий не имеющий при низших валентностях структурного сходства с фосфором, становится при валентности +5 его непосред-ственн.ым аналогом. Совершенно подобные же отношения характерны для элементов П1, IV, VI и VII групп периодической системы. Тем самым теоретически обосновывается закономерность структуры ее обычной (короткой) формы. [c.234]

    Эти сдвиги объясняют диагональное сходство физико-химических характеристик элементов и соединений соседних групп, например лития и магния, бора и кремния, бериллия и алюминия, титана и ниобия, ванадия и молибдена. Сходство внешних элек-тронных оболочек обусловливает близость свойств элементов-аналогов в первом приближении, а различия подвалентных оболочек аналогов определяют их различия, крайне важные для установления структурных особенностей элементов и образуемых ими соединений. [c.98]


Смотреть страницы где упоминается термин Ванадий аналоги: [c.541]    [c.168]    [c.514]    [c.21]    [c.497]    [c.115]    [c.91]    [c.98]    [c.243]    [c.303]   
Основы общей химии Том 2 Издание 3 (1973) -- [ c.382 , c.478 , c.491 ]




ПОИСК







© 2025 chem21.info Реклама на сайте