Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ванадий валентность

    Наиболее характерна для ванадия валентность 5, кроме того, известны крайне неустойчивые соединения, отвечающие валентностям 4, 3 и 2. [c.285]

    Как мы уже подчеркивали, выбор модельных объектов исследования диктуется требованиями метода радиоспектроскопии. В первую очередь будут исследованы вещества, в которых есть изотопы с ядерным спином, отличным от нуля в основной структуре. Сверхтонкие взаимодействия в спектрах ЭПР дают наиболее полную информацию о состоянии примесного центра и о его взаимодействии с решеткой. В Зй-группе ядерным спином обладает ядро при 100% естественного содержания. Титан также имеет нечетные изотопы, но их содержание составляет всего несколько процентов от общего числа ядер титана. Поэтому в первую очередь будет продолжено исследование ванадатов. Эти соединения представляют интерес также и как структурные аналоги силикатов. Их использование позволяет исследовать такие факторы, как координация ванадия, валентность и размеры катиона, локальная симметрия и сила кристаллического поля в различных узлах решетки. Эти исследования уже проведены на ванадатах щелочных металлов — структурных аналогах цепочечных силикатов. Сейчас лаборатория приступила к исследованию ванадатов щелочноземельных металлов. Они являются структурными аналогами силикатов трехвалентных металлов типа 80281207 и силикатов р. з. э. [c.105]


    Ванадий обладает переменной валентностью и в условиях высокой температуры легко отдает часть кислорода железу, которое при этом разрушается, образуя окислы. Пятиокись ванадия превращается в четырехокись (с выделением атомарного кислорода, который окисляет железо), но при контакте с избытком кислорода в газовом тракте снова регенерируется в пятиокись. Таким образом, ванадий может играть роль переносчика кислорода — катализатора газовой коррозии. [c.57]

    Полимеризация этилена при высоком давлении (100—350 МПа,, или 1000—3500 кгс/см ) протекает при 200—300°С в расплаве в присутствии инициаторов (кислорода, органических перекисей). Полиэтилен низкого давления получают полимеризацией этилена под давлением 0,2—0,5 МПа (2—5 кгс/см ) и температуре 50— 80 °С в присутствии комплексных металлоорганических катализаторов (триэтилалюминия, диэтилалюминийхлорида и триизобутил-алюминия). Полиэтилен среднего давления получают полимеризацией этилена в растворителе при давлении 3,5—4,0 МПа (35— 40 кгс/см ) и температуре 130—170 °С в присутствии окислов металлов переменной валентности, являющихся катализаторами (окислы хрома, молибдена, ванадия). В качестве растворителей применяют бензин, ксилол, циклогексан и др. [c.104]

    Коррозия стали в присутствии ванадия связана с его способностью проявлять переменную валентность. Процесс в присутствии Ог может идти по схеме  [c.178]

    Действие окиси ванадия как катализатора основано на том, что в условиях реакции она может переходить из одной степени окисления в другую. Высший окисел окисляет углеводород, а сам при. этом восстанавливается затем он немедленно снова окисляется свободным кислородом воздуха. Необходимо давать избыток воздуха, чтобы равновесие было сдвинуто в сторону окисла более высокого валентного состояния, [c.10]

    Применение катализаторов на основе металлов переменной валентности в некоторых случаях не позволяет полностью удалить из каучуков остатки катализатора, что может привести к значительному снижению стабильности каучука. С этой точки зрения синтез стереорегулярных каучуков с применением литийорганических соединений обеспечивает получение более стабильных полимеров, чем с применением катализаторов на основе кобальта, титана, ванадия. [c.628]

    Влиянию примесей металлов переменной валентности на окисление и стабильность синтетических каучуков посвящено значительное количество исследований. В литературе имеется большое количество данных по каталитическому влиянию на эти процессы железа [29—37, 39], меди [29—34, 37, 38, 41], марганца [30—33, 34, 37], кобальта [14, с. 111, 33, 34], никеля [34, 46], ванадия [34, 42], церия [33, 34], свинца [33, 34], олова [33], титана [43—47]. [c.629]

    Х1](ом, ванадий, платина и т. д. из органических соединений продукты, обладающие многократными связями или высокой валентностью, как, например, кислород, сера, азот (эфиры, кетоны, альдегиды, амины, сернистые соединения) наконец метановые и нафтеновые углеводороды. [c.213]

    Но атомы металлов третьего переходного ряда, от Ьи до Н , не настолько больше атомов соответствующих металлов второго переходного ряда, как можно было бы ожидать. Причина этого заключается в том, что после Ьа вклиниваются металлы первого внутреннего переходного ряда-лантаноиды. Переход от Ьа к Ьи сопровождается постепенным уменьшением размера атомов по причине возрастания ядерного заряда-этот эффект носит название лантаноидного сжатия. Поэтому атом гафния оказывается не столь большим, как следовало бы ожидать, если бы он располагался в периодической таблице непосредственно за Ьа. Заряд ядра у 2г на 18 единиц больше, чем у Т1, а у НГ он на 32 единицы больше, чем у 2г. Вследствие указанного обстоятельства металлы второго и третьего переходных рядов имеют не только одинаковые валентные электронные конфигурации в одинаковых группах, но также почти одинаковые размеры атомов. Поэтому металлы второго и третьего переходных рядов обладают большим сходством свойств между собой, чем с металлами первого переходного ряда. Титан напоминает 2г и НГ в меньшей мере, чем Zr и НГ напоминают друг друга. Ванадий отличается от МЬ и Та, но сами названия тантал и ниобий указывают, как трудно отделить их один от другого. Тантал и ниобий были открыты в 1801 и 1802 гг., но почти полвека многие химики считали, что имеют дело с одним и тем же элементом. Трудность выделения тантала послужила поводом назвать его именем мифического древнегреческого героя Тантала, обреченного на вечный бесцельный труд. В свою очередь ниобий получил свое название по имени Ниобы, дочери Тантала. [c.438]


    Химия элементов триады У НЬ Та сходна с химией элементов предыдущей триады V и Та имеют валентную конфигурацию а НЬ конфигурацию у ванадия возможны состояния окисления +2, - -3, +4 и -Ь 5, но для ЫЬ и Та основное значение имеет только состояние окисления + 5 (хотя известны некоторые соединения, куда они входят в состояниях окисления -I- 3 и -1-4). Подобно Т1, 2г и НГ, металлы триады У-ЫЬ-Та легко реагируют с К, С и О при высоких температурах, и по этой причине их трудно получить с использованием процесса высокотемпературного восстановления, который применяется для получения Ре и других металлов. [c.441]

    Ванадиевая коррозия в процессе эксплуатации и испытаний авиационных ГТД не отмечалась. Это обусловлено низким — не более 10 —10 (масс.)—содержанием ванадия в реактивных топливах. Пентаоксид ванадия имеет температуру плавления 685 °С и с конструкционными материалами образует легкоплавкие соединения. Кроме того, ванадий имеет переменную валентность, что делает его способным переносить кислород из газа к поверхности металла. [c.182]

    Наиболее коррозионно-агрессивными элементами, входящими в состав золы топлив, являются ванадий и натрий, причем величина коррозии во много раз увеличивается при их совместном присутствии, если температура превышает 600°С, что характерно для судовых газотурбинных установок. Присутствие в топливах других зольных элементов с переменной валентностью и сходных по некоторым свойствам с ванадием (никель, железо) существенного влияния на их коррозионную агрессивность не оказывает. [c.93]

    Катализаторы процесса представляют собой окислы металлов переменной валентности (хрома, молибдена, ванадия), которые наносятся на пористый алюмосиликатный носитель, содержащий окись кремния и окись алюминия в массовом соотношении 90 10. В промышленности в качестве катализатора чаще всего применяют окислы хрома. Катализатор готовят пропиткой алюмосиликатного носителя водным раствором хромовой кислоты (СгОз + НгО) с последующей сушкой и активацией. [c.9]

    Ион металла при этом восстанавливается в одну из низших валентных форм. В результате совместного действия кислорода и углеводорода ионы металлов часто находятся в разных валентных состояниях, что в среднем соответствует некоторой дробной величине. Так, ион ванадия при окислении нафталина воздухом имеет среднюю валентность 4,3 вместо 5 в УгОб. Очевидно, что состояние иона металла определяется окислительно-восстановительными свойствами среды и зависит от соотношения кислорода и углеводорода, от наличия водяных паров и т. д. При этом в начальный период работы катализатор постепенно формируется в состояние, стабильное для данных условий синтеза, а варьирование условий может изменить его активность и селективность. [c.412]

    В зависимости от условий приготовления и степени окисления (валентности) ванадия в катализаторе его цвет может изменяться в значительных пределах. Несульфированный катализатор,, как правило, белый, а окисленный (У +) и сульфированный катализатор становится желтым со светло-коричневым или красным оттенком. Восстановленный катализатор (У +) — зеленый, светло-серый или голубой. Катализатор гигроскопичен, во влажной атмосфере становится зеленым и размягчается. Нормальный цвет и твердость обычно восстанавливаются при аккуратном прогревании. [c.245]

    Ильина 3. П., Тимошенко В. И., Яковлева Т. Н. н др. Влияние валентного состояния ванадия на скорость окисления нафталина на ванадий — калий — сульфат — силикагелевом катализаторе//Труды четвертого международного симпозиума Гетерогенный катализ . Ч. 2.—Варна Болгарская АН.— [c.27]

    ВИИ металлов переменной валентности ванадия (III), хрома (1П) , марганца (III), кобальта (II), никеля (II), железа (III), меди (II), молибдена (VI) приводило к образованию метилфенилкарбинола, ацетофенона, фенола [221]. [c.263]

    Оксидом ванадия при сгорании тяжелых дистиллятных и остаточных топлив (ванадиевая коррозия). Коррозия стали в присутствии ванадия связана с проявлением им переменной валентности  [c.57]

    Кроме бериллия, электролизом расплавленных солей можно получать и другие тугоплавкие металлы (скандий, иттрий, титан, цирконий, гафний, торий, ванадий, ниобий, тантал, хром, молибден, вольфрам и рений). Все они являются элементами переходных групп периодической системы, для которых характерно образование катионов нескольких валентностей. [c.530]

    Вовлечение посторонних веществ в реакции окисления и восстановления представляет большой интерес для изучения химизма процессов изменения валентности, в частности — дает возможность обнаружить и изучить свойства промежуточных продуктов. Однако при количественном анализе сопряженные реакции обычно оказывают неблагоприятное влияние, и необходимо принимать меры к их устранению. Так, во многих случаях растворенный в воде кислород практически не окисляет находящихся в растворе восстановителей. Из подкисленного раствора йодистого калия кислород лишь очень медленно выделяет йод. Если же в растворе, содержащем растворенный кислород, идет реакция, например, между пятивалентным ванадием и йодистым калием  [c.359]

    Титрование растворами солей пятивалентного ванадия. Соединения пятивалентного ванадия являются окислителями, причем ванадий может восстанавливаться до различной валентности (4, 3 и 2) это обстоятельство представляет некоторые неудобства, так как необходимо каждый раз принимать во внимание строго определенные условия. [c.392]

    Методы титрования растворами солей пятивалентного ванадия разработаны главным образом В. С. Сырокомским с сотрудниками. Наряду с пятивалентным ванадием в качестве рабочего титрованного раствора окислителя применяется трехвалентный ванадий в качестве рабочего титрованного раствора восстановителя. Применение методов, основанных на титровании соединениями ванадия различной валентности, объединено под названием ванадатометрии .  [c.392]

    Представьте электронную формулу и составьте графическую схему валентных орбиталей атома ванадия. Объясните проявление ванадием положительной степени окисления, равной номеру группы периодической системы элементов. [c.24]

    Каково строение электронных оболочек атомов ванадия, ниобия и тантала Охарактеризуйте их валентности и степени окисления в соединениях. [c.166]

    Наиболее широко изученные хорошие катализаторы состоят из соединений ванадия (валентность ванадия — три или выше) и алкилпроизодных алюминия. В состав одного из компонентов должен входить галоген. Раздельное введение компонентов каталитической системы в реакционную смесь в присутствии мономера предпочтительно. Средняя продолжительность жизни активного катализатора невелика и составляет при 30° С приблизительно 5—10 мин. [c.125]

    H5Hg l, а раствор становится темно-красным. Этот раствор медленно светлеет и через несколько часов становится практически бесцветным, что указывает на полное разложение окрашенных веществ. При этом образуется осадок, содержащий ванадий, валентность которого зависит от исходного соотношения реагентов. Если мольное соотношение дифенилртути и хлорида ванадия в исходной смеси равняется 1, валентность ванадия в осадке на одну единицу меньше, ем в исходном хлориде ванадия. Более высокое отношение Нд V в исходной смеси приводит к снижению валентности ванадия в осадке более чем на единицу. В циклогексане обнаруживается только дифенил [347], причем с повышением соотношения (СбН5) Нд У0С1з до 10,2 количество его увеличивает я и достигает 1,4—1.67 моль на 1 моль УОСЬ [412]. Реакция протекает следующим образом  [c.93]


    В большинстве случаев адипиновую кислоту получают в две стадии. Первая — окисление циклогексана в циклогексанон и цик-логексанол воздухом (или смесью кислорода и азота, обогашенной кислородом) в газо-жидкостной системе при 3—5 ат и 120—-130 °С в присутствии растворимых нафтенатов и стеаратов металлов с несколькими валентными состояниями (Со, Мп, Си, Ре, Сг). Реакцию можно проводить также в присутствии органических перекисей или альдегидов и кетонов в качестве промоторов. Вторая стадия — окисление смеси циклогексанол — циклогексанон — осуществляется в промышленности по непрерывной схеме 50%-ной азотной кислотой в присутствии твердых катализаторов (медь, ванадий) при 80 °С и небольшом давлении. И в этом случае можно проводить окисление воздухом, но в иных, чем на первой ступени, условиях. [c.159]

    На примере окисления углеводородов на гетерогенных окисных катализаторах было установлено, что в жидкофазном процессе в ряде случаев образуются иные продукты, чем в газофазном с той же исходной системой [77, 78]. Продукты реакции при этом приближаются к продуктам реакции жидкофазного цепного окисления с гомогенными катализаторами из растворимых солей металлов переменной валентности. Так, о-ксилол в газовой фазе окисляется на пятиокиси ванадия во фталевый ангидрид, а в жидкой — в о-толуи-ловую кислоту, которая получается при окислении о-ксилола в жидкой фазе и с солями кобальта и марганца. В некоторых работах роль поверхности окисных катализаторов при жидкофазном окислении углеводородов сводят только к генерированию радикалов для ценного процесса, протекающего в объеме [79, 80]. Однако исследования [c.42]

    Оксиды ванадия более низкой валентности характеризуются более высокими температурами плавления, поэтому поддержание низкой валентности ванадия может способствовать снижению деструкции цеолита. Один из приемов снижения валентности ванадия - накопление на катализаторе некоторого количества кокса. Этот прием используется для защиты К21тализатора в двухст>пенчатом регенераторе установки ККФ. [c.113]

    Ванадий, ниобий и тантал составляют VB-подгруппу периодической системы, К этой подгруппе относится также элемент № 105, искусственно полученный в 1967 г., для которого предложено название нильсборий. Электронная конфигурация двух последних уровней атомов этих элементов выражается формулой (п—l)d ns-, а для ниобия 4d 5s (п — номер периода). Валентными электронами являются ( — )d и ns, но только в возбужденном состоянии атомов (кроме ниобия). Таким образом, проявляемая этими элементами в соединениях максимальная валентность равна пяти. Ванадий и ниобий являются моноизотопными элементами, а природный тантал состоит почти целиком из изото- [c.275]

    На выходящем пз регенератора катализаторе металлы находятся в виде окислов. Это было доказано на примере ванадия. В пор-фирине ванадий находится в четырехвалентной форме (У +). При отложении ванадия из такого соединения на катализатор валентность его не изменяется, что установлено по спектрам электронного парамагнитного резонанса катализаторов крекинга, отравленных ванадием [337]. После обработки загрязненных ванадием катализаторов крекинга воздухом в условиях, обычно применяемых для выжига, четырехвалентный ванадий переходит в другое окисленное состояние, вероятно, в пятивалентное, и не обнаруживается методом электронного парамагнитного резонанса. В связи с тем, что активность отравленного катализатора сильно зависит от вида соединения, в котором металл присутствует на катализаторе [217], для восстановления первоначальной активности и селективности отравленных катализаторов металлы следует либо совсе.м удалять, либо перевести в новые, неактивные соединения. [c.212]

    Первая стадия этого процесса — синтез фталонитрилов — осуществляется при атмосферном давлении в интервале температур 350—480 С при четырехсемикратном избытке аммиака и кислорода. В качестве катализаторов используют окислы металлов переменной валентности, преимущественно на основе пятиокиси ванадия. Применение смеси окислов позволяет повысить активность и несколько улучшить селективность катализаторов. Наиболее часто предлагают использовать смеси окислов ванадия, олова и титана, ванадия и хрома, ванадия и молибдена рекомендуются также смеси окислов ванадия, титана, молибдена и висмута. Катализаторы могут применяться в виде сплавов, совместно осажден ных окислов или наноситься на окись алюминия, карборунд, силикагель, алюмосиликат и др. [c.286]

    В условиях сгорания все примеси остаточных топлив подвергаются термическому разложению и окислению с образованием новых соединений. При определенном соотношении натрия и ванадия в топливе получается, например, комплексное соединение Ыа20-У204-5У205— ванадилванадат натрия. Это вещество имеет относительно низкую температуру плавления (625 °С) и может отлагаться на слабо нагретых деталях. Механизм коррозионного действия окислов ванадия связывают с его способностью проявлять переменную валентность в зависимости от условий среды. Коррозия стали в присут- [c.55]

    Назначение. Деактиваторы (инактиваторы, пассивато-ры) металлов — это присадки, подавляющие каталитическое действие металлов на окисление топлив. Деактиваторы, как правило, добавляют к топливу совместно с антиокислителями в концентрациях, в 5—10 раз меньших, чем антиокислитель. Они могут быть также компонентами двух- и трехкомпонентных присадок [1 — 11]. Установлено, что металлы переменной валентности являются сильными катализаторами окисления углеводородных топлив [1—5, II —17]. Металлы постоянно контактируют с топливами — в нефтезаводской, перекачивающей аппаратуре и в двигателях, входят в виде микропримесей в их состав. В топливных дистиллятах обнаружено присутствие алюминия, берилия, ванадия, висмута, железа, золота, кремния, калия, кальция, кобальта, меди, молибдена, натрия, никеля, олова рубидия, серебра, свинца, стронция, титана, цинка и др. [18—21]. [c.122]

    Особый научный интерес представляет изучение свойств и реакций металлоорганических соединений, в которых атомы ванадия и никеля связаны с углеродным каркасом молекул валентными связями и в виде комплексов, с целью нахождения путей деметаллизации смол и асфальтенов. Большой практический интерес представляют систематические исследования глубины и направления химических изменений состава и структуры смол при нагревании их, с учетом таких факторов, как продолжительность и температура, давление в среде различных газов (Н2, N2, О2, NHз, НгЗ и др.), а также изучение численных значений пороговых температур и критических концентраций смол в растворах на процесс их деструкции и асфальтенообразования. Детальное исследование химических реакций и процессов высокотемпературных превращений их представляет большую актуальность при выборе рациональных и экономичных направлений практических путей их технического использования (производство кокса, пеков, лаков, сажи и других продуктов). [c.261]

    Применение жидких амальгам дает хорошие результаты при переведении в низшие валентные формы ионов железа, ванадия, молибдена, урана и других металлоз С помощью различных амальгам (то же относится к твердым металлам) можно выполнять анализ растворов, содержащих несколько веществ, которые восстанавливаются при разных потенциалах. [c.368]

    При восстановлении до низших степеней валентности следует иметь в виду действие кислорода воздуха. Закисное железо, пятивалентный молибден, четырехвалентные ванадий и уран довольно устойчивы на воздухе. В этих случаях можно не принимать мер для предотвраш,ения действия воздуха. При восстановлении урана цинком или кадмием частично образуется трехвалентный уран при встряхивании на воздухе последний превращается в четырехвалентный уран таким образом, доступ воздуха здесь даже необходим. [c.370]


Смотреть страницы где упоминается термин Ванадий валентность: [c.16]    [c.295]    [c.240]    [c.102]    [c.227]    [c.19]    [c.369]   
Основы общей химии Том 2 Издание 3 (1973) -- [ c.479 ]




ПОИСК







© 2025 chem21.info Реклама на сайте