Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Галлий окислительно-восстановительный потенциал

    Вольтамперометрия. Вольтамперометрический метод анализа основан на изучении вольтамперограмм, т.е. кривых зависимости тока электрохимической реакции ячейки, возникающего в результате окислительно-восстановительных процессов на индикаторном электроде, от потенциала его поляризации. Исследования проводят в варианте двухэлектродной схемы, когда электрохимическая ячейка содержит два электрода индикаторный и вспомогательный, относительно которого задано поляризующее напряжение от внешнего источника. Иногда вспомогательный электрод располагают не в исследуемом растворе, а в растворе, находящемся в электрохимическом контакте с ним. В вольт-амперометрии наиболее употребительной является трехэлектродная схема, когда дополнительно к первому варианту в ячейку вводят электрод сравнения, относительно которого осуществляют задание и измерение поляризующего напряжения. В качестве индикаторных электродов в вольтамперометрии применяют твердые проводящие материалы (чистые металлы, сплавы, графит) и жидкие (ртуть, галлий, различные амальгамы). Из электродов последнего типа наибольшее распространение получил так называемый ртутный капающий электрод (РКЭ). Современной вольтамперометрии и ее использованию в аналитической химии посвящена монография Бонда [123]. [c.285]


    Нормальный окислительно-восстановительный потенциал растет от В до А1, а потенциалы галлия, индия и таллия постепенно падают. [c.435]

    Радиусы атомов Оа, 1п, Т1 —средние между элементами главной и побочной подгрупп 11 группы. Радиусы ионов меньше, чем у элементов подгруппы цинка. Поэтому по сравнению с элементами II группы у семейства галлия восстановительные свойства выше, чем у подгруппы цинка, но ниже щелочнозсхмельных металлов ме-талличность выше подгруппы цинка и нилсе щелочноземельных металлов. Способность к комплексообразованию у Оа, 1п и Т1 выражена довольно заметно. Энергия гидратации выше, а окислительно-восстановительный потенциал отрицательнее подгруппы цинка и при этом он значительно отрицательнее водородного. Поэтому элементы семейства галлия не встречаются в природе в свободном состоянии, вытесняют водород нз растворов его ионов, не выделяются при электролизе водных растворов солей в отсутствие перенапряжения водорода. Радиусы атомов и нонов растут от Оа к Т1, соответственно с этим восстановительные свойства увеличиваются, увеличивается различие энергий связи 5- и р-орбиталей внешнего слоя и соответственно уменьшается наиболее характерная степень окисления для Оа и 1п она +3, а для Т1 равна -Ь1. Это подтверж-316 [c.316]

    Подгруппа П1В. По строению внешнего энергетического слоя члены этой подгруппы — 5с, У, Ьа, Ас — похожи на щелочноземельные металлы, яо отличаются от них появлением электрона в -подуровне предвнешнего слоя, энергетически близкого к -электронам внешнего слоя, поэтому устойчивая степень окисления элементов равна -ЬЗ. Радиусы атомов и ионов элементов средние между щелочноземельными металлами и элементами подгруппы галлия и увеличиваются от скандия к актинию. Сила их восстановительных свойств также является средней между щелочноземельными металлами и семейством галлия и растет от скандия к актинию. Окислительно-восстановительный потенциал отрицательнее водорода. В свободном состоянии в природе они не встречаются и не вытесняют водород из растворов его ионов. Элементы с водородом образуют гидриды, сходные по свойствам с гидридом алюминия АШз, но с более высокой ионностью связи. Склонны к реакциям комплексообразования. Гидроксиды 5с(ОН)з, (ОН)з, Ьа(ОН)з и А1(0Н)з — основания более сильные, чем гидроксид алюминия, и сила оснований в подгруппе растет сверху вниз. В природе встречаются в рудах совместно с лантаноидами и актиноидами. [c.317]

    Реакционная способность анионных комплексов элементов, обладающих переменной валентностью, зависит от валентного состояния элемента. В некоторых случаях оказывается возможным, создавая в растворе определенный окислительно-восстановительный потенциал, перевести мешающие элементы в нереакционноспособные по отношению к красителю формы (определение галлия с родамином С [9] и др.). [c.15]

    Итак, мы видим, что умеренно легированные алмазные электроды ведут себя почти идеально в растворах индифферентного электролита, давая линейные графики Мотга— Шоттки, показывая ожидаемые фотоэлектрохимические свойства (см. ниже, глава 9) и т. д., что указывает на закрепление границ энергетических зон на поверхности полупроводника. В то же время в растворах окислительно-восстановительных систем границы энергетических зон на поверхности как бы открепляются , и алмаз демонстрирует электродное поведение, характерное для плохого металла. Это явление еще не на-щло адекватного объяснения, но оно наблюдается на многочисленных полупроводниковых электродах (из германия, кремния, арсенида галлия и др.) [124, 179]. По всей вероятности, изменение степени окисленности поверхности электрода под влиянием растворенного вещества меняет скачок потенциала в слое Гельмгольца, что в терминах электрохимии полупроводников трактуется, как открепление границ энергетических зон на поверхности. [c.58]


    Большая группа ферроцианидных методов определения различных элементов основана на потенциометрических титрованиях с использованием окислительно-восстановительной системы [Fe( N)6l /lFe( N)e] . Появление скачка потенциала в точке эквивалентности обусловлено тем, что пока в растворе присутствует избыток ионов осаждаемого металла, весь вводимый в систед1у ферроциапид связывается в труднорастворимую соль и отношение концентраций [Fe( N)e] /lF6( N)e] остается практически постоянным. Вслед за достижением точки эквивалентности в растворе появляются свободные ионы [Ре(СК)б] , и отношение IFe( N)e] /iFe( N)e] резко изменяется. Таким образом могут определяться катионы лантана и церия [560, 764, 1015], тория [1016, 1239], таллия [896], висмута [1236, 1240], галлия [459, 602, [c.279]

    Для амперометрического определения галлия можно применять только реакции осаждения и комплексообразования, так как окислительно-восстановительные реакции для него, как известно, нехарактерны. К наименее растворимым соединениям галлия относится его ферроцианид, образованием которого воспользовался еще Лекок де Буабодран при выделении галлия из кислых растворов. Состав ферроцианида галлия установлен И. В. Тананае-вым и Н. В. Баусовой [1], разработавщими также амперометрический метод определения по току окисления ферроцианида на платиновом электроде. Конечная точка отвечает молярному отношению галлий ферроцианид = 4 3, т. е. осадок имеет состав Оа4[Ре(СЫ)б]з- Растворимость ферроцианида галлия очень мала— можно определять до 10 мкг галлия в 20 мл. Алюминий, который почти всегда сопутствует галлию в растворах, не мешает титрованию, хотя при относительно больших количествах алюминия ток окисления ферроцианида заметно понижается, вследствие чего определение конечной точки становится менее отчетливым. Влияние алюминия было замечено и при других титрованиях и может быть устранено титрованием с таким электродом сравнения, потенциал которого лишь не намного отличался бы от потенциала окисления ферроцианида, например с перманганатный э 1ектродом (см. гл. V). [c.137]


Смотреть страницы где упоминается термин Галлий окислительно-восстановительный потенциал: [c.280]    [c.180]    [c.18]   
Основы общей химии Том 2 Издание 3 (1973) -- [ c.62 ]




ПОИСК





Смотрите так же термины и статьи:

Галлай

Галлий

Галлы

Окислительные потенциалы окислительно-восстановительных

Потенциал окислительно-восстановительны

Потенциал окислительный



© 2025 chem21.info Реклама на сайте