Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Галлий химические

    Распыление всегда приводит к изменению состава поверхности анализируемого образца, поскольку первичные ионы имплантируются в поверхностную зону толщиной 5-10 нм. Равновесные концентрации имплантированных частиц могут составлять от нескольких процентов до 50%. Если поверхность бомбардируют реакционноспособными ионами (например, ионами кислорода, цезия или галлия), химический состав поверхности и, следовательно, вероятность ионизации испускаемых частиц изменяются довольно резко. Этот факт весьма важен в МСВИ (см. с. 358, разд. Основы метода и применения МСВИ ). [c.355]


    Для получения галлиевых клеев в качестве наполнителей следует применять металлы, образующие с галлием химические соединения, имеющие высокую температуру плавления или разложения. Наилучшими пластическими свойствами обладают клеи, содержащие металлы, образующие с галлием соединения, в которых преобладают металлические связи, а не ковалентные или ионные. Подобные составы получают при сочетании галлия с металлами подгруппы меди, а также с переходными металлами УП1 группы. Свойства галлиевых клеевых паст с различными наполнителями приведены в табл. VI. 7 [47]. [c.168]

    Окисная пленка, находящаяся на поверхности склеиваемого металла, препятствует хорошему склеиванию. Ее удаляют как механическим, так и химическим путем. Механическим — с помощью твердого инструмента с каплей галлия на конце. В качестве материала для такого инструмента следует использовать вольфрам, имеющий достаточную твердость и в то же время хорошо смачиваемый галлием. Химический метод — например, травление в соляной кислоте. Для защиты обработанной таким образом поверхности от дальнейшего окисления на нее наносят тонкий слой галлия. Окисные пленки разрушаются и при нагревании до 300— 320 °С. Такой метод рекомендуется, в частности, при склеивании алюминия галлиевыми пастами [50]. [c.170]

    Физические и химические свойства. Галлий, индий и таллий — серебристо-белые металлы, кристаллизующиеся в решетках различного типа. Особенностью кристаллической решетки галлия является то, что она образована двухатомными молекулами Сз2, которые сохраняются и в расплавленном состоянии. Физические свойства галлия, индия и таллия см. в табл.39. [c.335]

    Существенную роль имеет также широкое распространение металлов в литосфере и гидросфере Земли. Металлы составляют 86% известных химических элементов. К металлам относятся 8-элементы, кроме водорода и гелия, все -элементы, все /-элементы, часть р-элементов (алюминий, галлий, индий, таллий). [c.4]

    Взаимодействие нефтяных сульфидов с галогенами, галогеналкилам и, солями и комплексами тяжелых металлов. Нефтяные сульфиды образуют стабильные комплексы донорно-акцепторного типа с галогенами, галоген-алкилами (метилиодидом и др.), с солями металлов — олова, серебра, ртути, алюминия, цинка, титана, галлия и другими кислотами Льюиса за счет передачи неподеленной пары электронов атома серы на свободную электронную орбиталь акцептора. Важнейшие комплексообразователи — хлорид алюминия, тетрахлорид титана, хлорид ртути(II), ацетат серебра, карбонилы железа. Реакции комплексообразования не селективны, в той или иной степени они протекают и с другими типами гетероатомных соединений. Однако в сочетании с другими физико-химическими методами ком-плексообразование служит важным инструментом установления состава, строения сульфидов. [c.250]

    Как и в ранее рассмотренных подгруппах р-элементов, с увеличением атомного номера участие 5 -электронов в образовании связей уменьшается. Особо инертна электронная пара Поэтому если для галлия наиболее характерна степень окисления +3, то для таллия + 1. Индий чаще всего проявляет степень окисления - 3. Вместе с тем для элементов Оа—1п—Т1 возрастает роль и /-орбиталей в образовании химической связи. Это сказывается на значении координационных чисел. Так, для галлия и индия типичны координационные числа шесть (зр с( -гибридизация) и четыре (зр -гибридизация), а для таллия еще, кроме того, семь (зр (1 /-гибридизация) и восемь. [c.536]

    Металлические галлий и его аналоги получают при довольно сложной химической переработке полиметаллических руд. После многократной переработки и очистки из руд выделяют их оксиды или хлориды. Последние химическим или электрохимическим способом восста-наливают до металлов. [c.537]


    Галлий находится в 5-м ряду III группы периодической системы. По своим физическим и химическим свойствам он близок к алюминию (эка-алюминий, предсказанный Д. И. Менделеевым) и мало похож на цинк и германий. Это мягкий металл серебри- [c.542]

    Галлий, индий и таллий относятся к главной подгруппе III группы периодической системы элементов (разд. 35.10). В соответствии с номером группы в своих соединениях они проявляют степень окисления -ЬЗ. Возрастание устойчивости низших степеней окисления с ростом атомного номера элемента иллюстрируется на примерах соединений индия(III) (легко восстанавливающихся до металла), а также большей прочности соединений таллия(I) по сравнению с производными таллия(III). Ввиду того что между алюминием и галлием находится скандий — элемент первого переходного периода — вполне можно ожидать, что изменение физических и даже химических свойств этих элементов будет происходить не вполне закономерно. Действительно, обращает на себя внимание очень низкая температура плавления галлия (29,78 °С). Это обусловливает, в частности, его применение в качестве запорной жидкости при измерениях объема газа, а также в качестве теплообменника в ядерных реакторах. Высокая температура кипения (2344°С) позволяет использовать галлий для наполнения высокотемпературных термометров. Свойства галлия и индия часто рассматривают совместно с алюминием. Так, их гидрооксиды растворяются с образованием гидроксокомплексов (опыт I) при более высоких значениях pH, чем остальные М(ОН)з. Гидратированные ионы Мз+ этой [c.590]

    Пособие содержит описания лабораторных работ по общей химии (определение эквивалентов и молекулярных масс, кинетика реакций, электролитическая диссоциация, гидролиз и др.), а также опытов по изучению свойств элементов н их важнейших неорганических соединений. Особое внимание уделено описанию синтезов соединений, не требующих сложной аппаратуры. Каждый раздел заканчивается перечнем контрольных вопросов, упражнений и задач. В практикум по неорганической химии впервые включен ряд инструментальных работ (определение частного порядка и константы скорости реакции, определение коэффициента распределения, спектрофотометрическое определение состава комплексов и др.) и опытов по химии элементов (химии галлия и лантаноидов, химические свойства фосфорной кислоты и ее солей и др.). [c.2]

    Эго заставило химиков всего мира заговорить о сбывшихся пророчествах знаменитого русского ученого. Первым был открыт экаалюминий (Лекок-де-Буабодран, 1875). Этот элемент был назван галлием (Галлия — старинное название Франции). Вторым был открыт экабор (скандий) (Л. Ф. Нильсон, 1880), затем экасилиций, названный германием (К. А. Винклер, 1886). После открытия германия Винклер писал Вряд ли может существовать более яркое доказательство справедливости учения о периодичности элементов, чем открытие до сих пор гипотетического экасилиция — Ое оно составляет, конечно, более чем простое подтверждение смелой теории,— оно знаменует собою выдающееся расширение химического поля зрения, гигантский шаг в области познания . [c.77]

    Применение в энергетике. Бор (изотоп 5°В) интенсивно поглощает медленные нейтроны, поэтому используется для изготовления регулирующих стержней атомных реакторов и защитных устройств от нейтронного облучения. Кристаллический бор обладает полупроводниковыми свойствами и используется в полупроводниковой технике (его проводимость при нагревании до 600 С возрастает в 10 раз). Исключительной химической стойкостью, твердостью, жаростойкостью обладают многие соединения бора с металлами побочных подгрупп. Алюминий и его сплавы применяют в энергетике в качестве конструкционного и электротехнического материала. Галлий применяют в полупроводниковой технике, так как его соединения с мышьяком, сурьмой, висмутом, а также аналогичные соединения индия обладают полупроводниковыми свойствами. Галлий используют при изготовлении высокотемпературных термометров с кварцевыми капиллярами (измерение температуры до 1500° С). Галлий может быть использован как хороший теплоноситель в системах охлаждения ядерных реакторов, лазерных устройств. Индий обладает повышенной отражательной способностью и используется для изготовления рефлекторов и прожекторов. Способность таллия при температуре ниже 73 К становиться сверхпроводником делает его перспективным материалом в энергетике. Представляют практический интерес многие соединения этих металлов и соединения бора, например нитрид бора ВЫ—боразон, отличающийся исключительной твердостью и химической инертностью. [c.230]

    Табличные формы периодической системы элементов были широко использованы Менделеевым для исправления высших степеней окисления и атомных масс (12 элементов из 63 известных химических элементов), а также для предсказания еще неоткрытых элементов и их свойств. Не прошло и двух десятилетий, как были открыты галлий, скандий и германий. При этом оказалось, что свойства вновь открытых элементов с поразительной точностью совпали с предсказанными Д. И. Менделеевым. [c.60]

    В настоящее время изучается обширная группа полупроводниковых материалов, представляющих собой химические (большей частью бинарные ) соединения. Интересно отметить, что среди этих соединений хорошими проводниковыми свойствами обладают соединения элементов, равноотстоящих от середины таблицы Менделеева, например вещества состава A i , где А — элемент III группы, а В — элемент V группы. Примеры полупроводников подобного рода фосфиды галлия и индия (GaP, InP), арсениды тех же метал- [c.458]

    Металлический характер элементов возрастает от В к Т1 по химическим свойствам бор-неметалл, алюминий, галлий [c.176]

    Химические свойства. Галлий, индий и таллий —активные металлы-восстановители, ионизационные потенциалы которых лежат в пределах 5,8—6,1 в. [c.184]

    Химические знания — необходимая составная часть базовых, фундаментальных знаний, позволяющих инженеру, технологу, иссле> дователю достигать новых результатов в различных областях техники. Как одна из сторон материальной культуры, всей человеческой цивилизации техника всегда была производной от уровня развития химии. Неудивительно, что от химической компоненты получили свое название целые эры в развитии цивилизации каменный, бронзовый, железный век. Двадцатый век называют веком атомной энергии, химии синтетических материалов и проникновения в тайны живого. Технику XX в. невозможно себе представить без таких металлов, как алюминий, титан, используемых при строительстве самолетов и кораблей, цирконий, уран, свинец, бериллий, используемых в атомной технике, германий, кремний, мышьяк, галлий, олово, сурьма, используемых в полупроводниковой технике, без серебра в фотографии, без меди, алюминия в электротехнике, без таких металлов как хром, вольфрам, тантал, молибден и многих других, способствующих созданию высокопрочных, термостойких, коррозионноустойчивых материалов. Без этих материалов нельзя представить себе будущее нашей цивилизации .  [c.183]

    Принцип химической аналогии, использованный Менделеевым как основной ориентир при решении сложных вопросов размещения элементов в периодической системе, также диктует отнесение РЗЭ к главной подгруппе [3]. Как мы увидим ниже, кислотно-основные свойства закономерно изменяются с усилением основности по ряду А1<5с< <Ьа, тогда как в ряду А1>0а<1п<Т1 минимальная основность принадлежит галлию. Последнее также говорит о большей обоснованности отнесения элементов подгруппы галлия к побочной, а подгруппы скандия — к главной подгруппе П1 группы периодической системы. [c.50]


    Обнаружение галлия в железе. Сиборг и Ливингуд [823], методом активационного анализа, подвергая железо бомбардировке дейтронами, обнаружили небольшие количества галлия в железе. Железо и галлий отделяли от активных кобальта и марганца экстракцией эфиром. Во фракции железо — галлий были найдены изотопы с периодами полураспада в 20 мин., 14,1 часа и 47 дней, соответствующие известным периодам полураспада для Оа о, Оа и Ре . В качестве контрольного опыта галлий химически отделяли от железа, к образцу которого после бомбардировки было прибавлено в качестве носителя небольшое количество неактивного галлия. Изотопы с периодами полураспада в 20 мин. и 14,1 часа оказались лишь во фракции галлия. [c.78]

    Галлий химически взаимодействует и с мышьяком и с селеном. При взаимодействии с мышьяком образуется арсенид галлия (ОаАз) —полупроводник типа А Ф со структурой цинковой обманки [140, 141]. С селеном галлий образует селенид галлия—.ОагЗ03, обладающий также структурой цинковой обманки. В отличие от ОаАз структура ОагЗез имеет постоянные дефекты в решетке [142]. Ширина запрещенной зоны ОагЗез по оптическим измерениям при"300°К равна 1,9 эв. Подвижность электронов при 300° С 10 сж /в сек [143, 144]. [c.102]

    Следы галлия могут быть определены методом одновременной бомбардировки нейтронами испытуемого образца и известного количества чистого оксихинолипата галлия. Изотоп Са " захватывает нейтрон и образует радиоактивный изотоп Са" с периодом полураспада 20 мин., а изотоп Са , захватывая нейтрон, образуетрадиоактивный изотоп Са " с периодом полураспада 14 час. Затем к анализируемому образцу прибавляют точно известное количество чистого неактивного галлия, достаточное для проведения последующих манипуляций, и весь галлий химическим путем выделяют в форме чистого оксихинолината. Далее с помощью счетчика Гейгера определяют интенсивность излучения. Сравнение активности радиации с контрольным образцом позволяет определить количество галлия, содержащегося в исследуемом образце. [c.208]

    Металлические галлий и его аналоги получают при довольно сложной химической переработке полиметаллических руд. После много-кратой переработки и очистки из руд выделяют их оксиды или хлориды Последние химическим или электрохимическим способом восстанавливают до металлов. Галлий и его аналоги легко сплавляются со многими металлами. При этом части образуются эвтектические сплавы с низкими температурами плавления. Например, сплав 18,1% 1п с 41 %В1, 22,1 % РЬ, 10,6% 5п и 8,2% Сс1 плавится всеголишь при 47 С  [c.463]

    В английском варианте Правил ШРАС одинаковые по типу заряда части формулы располагаются для различных типов соединений по-разному, но чаще всего по алфавиту символов элементов, например, sGaMn204(0H)4. При составлении названий Правила ШРАС рекомендуют перечислять одинаковые по типу заряда части в соответствии с алфавитом их названий Сз0аМп204 (ОН) 4 — тетрагидроксид-тетраоксид галлия-димар-ганца-цезия. Очевидно, что для русского химического языка алфавитный принцип при переходе от формулы к названию (и наоборот) крайне неудобен и создает лишь дополнительные трудности. [c.11]

    Оксиды галлия и индия по химической природе амфотерны, И2О3 имеет основный характер. С водой они не взаимоде(1ствуют. Оксиды галлия и иидия при взаимодействии с кислотами образуют соответствующие соли. ТЬО взаимодействует с водой с образованием гидроксида таллия (I), а с кислотами образует соли таллия [c.337]

    Знание химического состава минеральных веществ, входящих в состав углей, необходимо при их деструктивной гидрогенизации для получения жидкого топлива. Установлено, что некоторые минеральные компоненты (соли щелочных и щелочноземельных металлов) оказывают отрицательное влияние на ход процесса, а другие РегОз, ЗпОг, Т102 и многие редкие элементы (бор, галлий, германий, кобальт и др.)—являются отличными катализаторами. В последние годы все больший интерес вызывает вопрос о каталитическом или тормозящем влиянии минеральных веществ на процессы полукоксования, коксования и спекания углей. [c.102]

    Периодическая система химических элеменюв Д. И. Менделеева завоевала к себе доверие после подтверждения прогнозов, сделанных на ее основе. До Периодической системы Менделеева. — пишет В. И. Семишин [5, с. 14], — открытие новых элементов являлось чистой случайностью, Периодическая система ясно указала, какие элементы остались еще не открытыми". Сам Менделеев писал по этому поводу "Периодическая законность первая дала воз.можность видеть неоткрытые еще элементы в такой дали, до которой невооруженное этой законностью химическое зрение до тех пор не достигало" [11, с. 9]. Первым подтверждением предвидений Менделеева стало открытие галлия Лекоком де Буободраном [c.164]

    Монокристаллы германия, кремния, арсенида галлия, сульфида свинца и т. п. используют для изготовления полупроводниковой аппаратуры диодов, триодов и т. д. (см. разд. У.14). Монокристаллы рубина, фторида лития и некоторые полупроводники применяются в лазерах. Монокристаллы кварца, каменной соли, кремния, германия, исландского шпата, фторида лития и др. применяют в оптических узлах многих приборов физико-химического анализа. Монокристаллы кварца и сегиетовой соли используют для стабилизации радиочастот, генерирования ультразвука, изготовления основных деталей микрофонов, телефонов, манометров, адаптеров и т. д. Монокристаллы алмаза широко используются при обработке особо твердых материалов и бурении горных пород. Отходы монокристаллов рубина нашли применение в часовой промышленности. Многие монокристаллы применяются так же в качестве украшений (бриллиант, топаз, сапфир, рубин и др.). [c.38]

    Для получения очень чистого металла первичный галлий растворяют в азотной кислоте и получаемый Оа(МОз)з подвергают дробной перекристаллизации, после чего азотнокислую соль прокаливанием переводят в окись, либо с применением раствора х. ч. NaOH галлий осаждают из раствора в виде гидроокиси. Можно также получить чистый галлий, растворяя металл в 6-н. НС1 и экстрагируя затем Ga la эфиром. Из полученных химически чистых соединений галлий извлекают путем электролиза щелочного раствора. [c.548]

    ГАЛЛИЙ (Gallium, от древнего названия Франции) Ga — химический элемент П1 группы 4-го периода периодической системы элементов Д. И. Менделеева, п. н. 31, ат. м. 69,72. Имеет два изотопа Ga и iGa. Существование Г. (экаалюминия) предвидел Д. И. Менделеев еще в 1870 г. Впервые выделил Г. в 1875 г. французский химик П. Е. Ле-кок де Буабодран. Г.— серебристо-белый металл, т. пл. 29,8°С, т. кип. 2230 С. В химическом отношении очень напоминает алюминий. В соединениях Г. трехвалентен. При обыкновенной температуре не окисляется, водород из воды не вытесняет. Галогены (кроме иода) взаимодейсгвуют с Г. при обыкновенных условиях. При нагревании растворяется в большинстве минеральных кислот. Оксид Г. GaaOa белого цвета. Гидроксид [c.64]

    ИНДИЙ (Indium — название от характерных для пего спектральных синих (цвет индиго) линий) In — химический элемент III группы 5-го периода периодической системы элементов Д. И. Менделеева, п. и. 49, ат. м. 114,82, принадлежит к группе рассеянных элементов. И. открыт в 1863 г. Ф. Рейхом и Т. Рихтером. Это очень мягкий, серебристобелый металл, химический аналог галлия, т. пл. 156,4° С, легко растворяется в кислотах, устойчив к действию щелочей. В соединениях И. трехвалентен. Получают И. из отходов свинцово-цинкового и оловянного производств элек- [c.107]

    Карбиды. При взаимодействии бора, алюминия и элементов подгруппы галлия с углеродом возможно образование карбидов, которые имеют смешанную химическую связь. Наибольший интерес представляют карбиды бора и алюминия. Карбид бора В4С может быть получен при накаливании смеси ВоОз с углем в электрической печи. В,,С тугоплавок ( ,,=2550 °С), чрезвычайно тверд (близок по твердости к алмазу) и устойчив к различным химическим воздействиям. Карбид алюминия АЬС, — производное метана СН4, метаннд — получают при взаимодействии глинозема с углем (/= = 2000°С)  [c.276]

    Общая характеристика группы. У всех элементов третьей группы высшая степень окисления в соответствии с номером группы равна трем. Этому отвечают их оксиды типа КаОз. По химическому характеру только окись бора В2О3 является кислотным оксидом оксиды алюминия А Оз, индия 1П2О3 и галлия ОэгОз обладают амфотерными свойствами, а все остальные являются основными с постепенным усилением основных свойств при переходе к элементам с ббльшей атомной массой. [c.72]

    Алюминий, галлий, индий и таллий — типичные металлы бор — типичный неметьлл, по своим химическим и физическим свойствам он похож на углерод и кремиий и существенно отличается от элементов III группы. [c.330]

    Алюминий, галлий, индий и таллий химически активны и образуют многочисленные соединения. По мере увеличения порядкового номера металлические свойства увеличиваются так, если гидроокись алюминия обладает ярко выраженными амфогерными свойствами (см. 2, 3, гл X), то амфотерность гидроокисей галлия и индия проявляется намного слабее, а гидроокись таллия амфотерных свойств вообще не проявляет. Все эти элементы сходны по своим физико-химическим свойствам (окислы и гидроокиси амфотерны, способность солей к сильному гидролизу и т. д.), все элементы в чистом виде, а также их сплавы и соединения находят разнообразное применение и широко используются в современной технике. [c.330]

    Элементы бор В, алюминий Л), галлий Оа, индий 1п и таллий Т1 входят в состав П1А групты Периодической системы Д. 11 Менделеева. Строение валентного электронного уровня у атомов этих элементов одинаково — пз пр. Отсюда вытекает характерная для этих элементов степень окисления ( + 111) электроотрицательность элементов невысока. По химическим свойствам бор—неметалл алюминий, галлий и индий — амфотерные элементы, причем при переходе от Л1 к 1п основные свойства усиливаются, таллий проявляет металлические свойства для него более устойчиво состояние Т , чем Т1 ".  [c.199]

    У некоторых элементов Д. И. Менделеев не обнаружил. чимических аналогов (например, у алюминия А1 и кремния 5]), поскольку такие элементы были еще неизвестны в то время. Для них он оставил пустые места и на основе периодической повторяемости предсказал их химические свойства. После открытия соответствующих элементов (например, аналога алюминия-галлия Оа, аналога кремния- [c.33]


Библиография для Галлий химические: [c.210]   
Смотреть страницы где упоминается термин Галлий химические: [c.550]    [c.168]    [c.292]    [c.13]    [c.106]    [c.97]    [c.104]    [c.591]    [c.357]    [c.147]    [c.209]    [c.50]   
Основы общей химии Том 2 Издание 3 (1973) -- [ c.52 , c.59 ]




ПОИСК





Смотрите так же термины и статьи:

Галлай

Галлий

Галлы



© 2024 chem21.info Реклама на сайте