Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Галогены активность

    Введение карбонильной группы (С = 0). Усиливает физиологическое действие соединения. Многочисленные примеры показывают, что альдегиды и кетоны физиологически активнее соответствующих углеводородов, а если вместо атома водорода в радикал ввести галоген, активность увеличивается еще больше. Например, хлораль обладает более сильным гипнотическим действием, чем ацетальдегид. [c.145]

    В разд. 7.3 было отмечено, что снособность галогенов активно реагировать с ненасыщенными соединениями, нанример с этиленом, находится в зависимости от величины энергии связи, особенно С=С и С—С. Обсудите эту взаимосвязь на примере брома и этилена. [c.230]


    Реакции галогенирования окислов при высоких температурах являются обратимыми. Состояние равновесия определяется соотношением концентраций кислорода и галогена в газовой фазе. Действуя избытком галогена и непрерывно удаляя кислород из зоны реакции, можно нацело сместить равновесие в сторону образования галогенида. Опытные данные по галогенированию окислов, а также данные о тепловых эффектах этих реакций и другие дают возможность установить некоторые общие закономерности. В ряду галогенов активность их действия на окислы падает от фтора к иоду. При взаимодействии с фтором многие окислы сравнительно легко образуют фториды, при действии же иода на окислы можно получить иодид только в редких случаях. [c.176]

    Начнем с группы элементов, которые называют галогенами. Четыре самых важных члена этой группы — фтор, хлор, бром и иод. Фтор — газ бледно-зеленого цвета, очень ядовитый и очень активный это самое активное из известных нам веществ. Он взаимодействует почти со всеми молекулами, с которыми приходит в соприкосновение, вытесняя из них те или иные атомы и занимая их место. Хлор — тоже газ, желто-зеленого цвета, тоже активный и ядовитый, но несколько меньше фтора. Бром — темно-красная жидкость, а иод — твердое вещество серого цвета.  [c.67]

    Поэтому по окислительной активности водород существенно уступает галогенам. По этой же причине ясно выраженный ионный характер проявляют лишь гидриды наиболее активных металлов — щелочных и щелочноземельных, например КН и СаНа. [c.276]

    Бром и иод — достаточно сильные окислители, хотя и уступают по активности фтору и хлору. В ряду F — At снижается окислительная активность простых веществ. Так, изменение энергии Гиббса в реакциях взаимодействия галогенов с водородом [c.299]

    Взаимодействие фтора с водородом протекает со взрывом даже на холоду, образование НВг из простых веществ происходит лишь при достаточном нагревании, а образование HI — при столь сильном нагревании, что значительная часть его термически разлагается. Об уменьшении окислительной активности молекул галогенов с увеличением порядкового номера элемента свидетельствует также сопоставление их стандартных электродных потенциалов. [c.299]

    С галогенами силаны взаимодействуют со взрывом. Силаны — кислотные гидриды, о чем свидетельствует характер их взаимодействия со щелочами (см. выше). При этом разложение силанов происходит активно даже в присутствии следов щелочи. В нейтральной и кислой среде кремневодороды довольно устойчивы. [c.416]

    Кальций представляет собой ковкий, довольно твердый белый металл. На воздухе он быстро покрывается слоем оксида, а при нагревании сгорает ярким красноватым пламенем. С холодной водой кальций реагирует сравнительно медленно, ио из горячей воды быстро вытесняет водород, образуя гидроксид. Кальций — очень активный металл, легко соединяющийся с галогенами, серой, азотом и восстанавливающий при нагревании оксиды многих металлов. [c.614]

    Фосфор очень активно взаимодействует с галогенами. При избытке фосфора образуются РГз, при избытке галогенов — PF s Иодид Pis не образуется сказываются пространственные затруднения. РГз и РГ5 являются галогенангидридами соответствующих кислот  [c.421]

    Адсорбционные методы очистки применяют для удаления истинно растворимых органических соединений из сточных вод. Широкое применение нашел адсорбционный метод очистки с использованием обычных активных углей и некоторых других сорбентов, в частности активных углей, получаемых из отходов производства феноло-формальдегидной смолы, торфа, а также синтетических высокопористых полимерных адсорбентов. Активные угли высокопористые адсорбенты с удельной поверхностью от 800 до 1500 м2/г. Адсорбционное поглощение растворимых органических загрязнений активным углем происходит в результате дисперсионных взаимодействий между молекулами органических веществ и адсорбентом. Активный уголь гидрофобный адсорбент, т. е. обладает сродством к гидрофобным молекулам органических веществ. Чем выше энергия гидратации адсорбата, тем хуже он извлекается из воды адсорбентом. Сказанное, в частности, подтверждается тем, что активные угли хорошо сорбируют такие гидрофобные соединения, как алифатические и ароматические углеводороды, их галоген- и нитрозамещенные соединения и другие и значительно хуже гидрофильные соединения, например низшие спирты, гликоли, глицерин, ацетон, низшие карбоновые кислоты и некоторые другие вещества. [c.95]


    Экспериментально установлено, что молекула бензола — плоская, атомы углерода образуют правильный шестичленный цикл ( ССС = 120°). Длина связи С—С в бензоле, промежуточная между длинами ординарной и двойной связей (см. табл. 9), формула Кекуле с чередующимися и разными по длине связями С—С и С=С не отвечает опыту. Гипотетический бензол Кекуле должен был бы так же активно присоединять молекулы галогенов по месту двойных связей, как непредельные углеводороды, что не наблюдается. Для бензола, напротив, характерны реакции замещения водорода на галоген. Но и здесь факты противоречат формуле Кекуле. В соответствии с ней возможно два о-дихлорбензола [c.115]

    Активность и селективность катализатора повышается при введении в него промотирующих добавок, например галогенов. [c.238]

    Катализатор довольно чувствителен к каталитическим ядам, которыми могут быть такие примеси в сырье, как вода, кислород и многие ковалентные соединения кислорода, азота, серы, а также галогенов. Большинство этих соединений полярно и отравляет катализатор, образуя прочные связи с центрами полимеризации и снижая тем самым адсорбцию олефинового мономера, или препятствует продолжению роста цепи, если яд вводится уже после начала полимеризации. Как правило, отравление обратимо, поскольку активность катализатора восстанавливается, если прекратить поступление яда в реактор. [c.166]

    Среди производных гидразона наилучшим является ацетонди-метилгидразон [166]. Активность галогенсодержащих Л -гетероцик-лов зависит от электрбноакцепторных свойств гетероцикла и подвижности связи между ним и галогеном. Активность хлортриазиновых красителей модифицируется по следующему механизму [136] (см, также [184])  [c.266]

    Такое же благоприятное влияние оказывают галогены. Они обра-З уют свободные радикалы, как это уже известно, из реакции хлорирования. Образующийся галоидоводород опять окисляется в свободный галоген, и последний действует снова радикалообразующе. По этой причине для ускорения реакции нитрования галогена требуется значительно меньше, чем кислорода. Кроме того, галогены оказывают благоприятное действие вследствие того, что они соединяются с окисью азота в хлористый нитрозил и тем самым не происходит обрыва цепи. Кислород в условиях газофазного нитрования не может так быстро окислять N0 в ЫОг- Азотная кислота, как и N02, может употребляться как нитрующий агент. Действие азотной кислоты основывается лишь на том, что она поставляет N02 это происходит путем термического разложения ННОз0H + N02. Распад с образованием радикалов также объясняет, почему с азотной кислотой получаются лучшие результаты, чем с N02 [89]. При разложении азотной кислоты образуются чрезвычайно активные гидроксильные радикалы, которые при взаимодействии с углеводородом сразу же образуют алкильные радикалы НН + ОН-> К + Н20. Поэтому, как нашел Бахман с сотрудниками, добавка кислорода прн нитровании с двуокисью азота имеет относительно больший эффект, чем при применении самой азотной кислоты. Но и N02, как таковая, способствует образованию радикалов и одновременно нитрует. [c.285]

    Сера — достаточно активный неметалл. Даже при умеренном на-1ревании она окисляет многие простые вещества, но и сама довольно j erKo окисляется кислородом и галогенами. При нагревании в кипящей воде и значительно лучше в кипящих растворах щелочей сера испропорционирует  [c.324]

    Вследствие повышенной кратности связи молекула N0 достаточно устойчива, и ее распад становится заметным лишь при 500°С. Оксид азота (П) — химически активное соединение, легко восстанавливается (при действии ЗОз, Сг +) в растворах до ЫНдОН и НдЫ с водородом образует гремучую смесь. Легко окисляется кислородом, галогенами и др.  [c.360]

    На во духе, как и алюминий, покрывается оксидной пленкой, придающей e у матовый оттенок и обусловливающей пониженную химическую активность. При нагревании бериллий сгорает в кислороде и на воздухе, взаимодействует с серой, азотом. С галогенами реагирует при обычных т1 мпературах или при небольшом нагревании. Все эти реакции сопрог ождаются выделением значительного количества тепла, что опреде ляется большой прочностью кристаллических решеток продуктов взаимодействия ВеО, ВеЗ, ВсзЫз и др. С водородом в обычных условиях Ве не реагирует. [c.471]

    Магний — активный металл. Легко взаимодействует с галогенами при нагревании сгорает на воздухе, окисляется серой и азотом. С соот-зетствующими металлами образует эвтектические смеси, твердые растворы и интерметаллические соединения, которые входят в состав его сплавов. Наиболее важный сплав магния — электрон (3—10% А1, 0,2—3% Zn, остальное Mg), который благодаря его прочности и малой плотности (1,8 г/см ) применяют в ракетной технике и авиастроении. [c.476]

    При обычной температуре металлы коррозионноустойчивы на во .духе, что объясняется наличием на их поверхности защитной пленки ЭО2. При нагревании же их активность заметно возрастает. Так, при температуре красного каления они сгорают в кислороде, образуя ЭО2. При 800° С активно реагируют с азотом, образуя 3N. С галогенами взаимодействуют при 150—400° С, образуя ЭНа14, и г. д. В порошкообразном состоянии металлы пирофорны. [c.530]

    Вследствие довольно высокой активности марганец легко окисляется, в особенности в порошкообразном состоянии, при нагревании кислородом, серой, галогенами. Компактный металл на воздухе устойчив, так как покрывается оксидной пленкой, которая препятствует дальнейшему оксилению металла. Еще более устойчивая пленка образуется при действии на Мп холодной азотной кислоты. Технеций и рений вступают в химическое ваимодействие с неметаллами при достаточно сильном нагревании. Так, при 400° С они сгорают в атмосфере кислорода, образуя Э2О,. [c.570]

    По химической активности и ко( альту. С кислородом он начинает взаимодействовать при 500°С. При нагревании (в особенности в измельченном состоянии) легко окис1яется галогенами, серой, селеном, фосфором, мышьяком, сурьмой и др. С большинством из них он, как и другие -элементы, об-разу, т нестехиометрические соединения переменного состава, многие из которых металлоподобны. [c.607]

    Гидриды ЭНз построены по типу флюорита (см. рис. 70, а) и име-ь)Т солеобразный характер. Они в большей мере напоминают ионные гидриды щелочноземельных металлов, а с гидридами d-элементов гмеют мало общего. Водородные соединения лантаноидов — химически весьма активные вещества, очень энергично взаимодействуют ( водой, кислородом, галогенами и другими окислителями. Особо реакционноспособны соединения типа ЭН3. [c.646]

    Холмберг [И] показал, что рацемизация оптически активных галогенов в растворе подчиняется суммарному кинетическому закону второго порядка, первого по отношению к галоген-иону и первого по отношению к алкилгалогену. Хьюз с сотр. [12] показали, что скорость обмена 2-октилио-дида с радиоактивным иодом в растворе ацетона в точности равна скорости инверсии, причем обе скорости подчиняются суммарному закону второго порядка. Это, конечно, вполне вероятно, если предположить, что обе реакции протекают по механизму 8 - 2 с обращением конфигурации  [c.474]

    В большинстве работ по изучению каталитической активности оксида алюминия затрагивается связь ее с поверхностной кислотностью. Обширная дискуссия о природе кислотных центров оксида алюминия в настоящее время решена в пользу утверждения, что кислотность оксида алюминия связана с кислотой типа Льюиса и обусловлена ионами алюминия с координационным числом 4. Некоторые авторы предполагают наличие на поверхности оксида алюминия двух типов кислотных центров до 300 °С имеет место кислотность типа Льюиса, а выше 300 °С - Брен-стеда. В серии рабо т, где высказана эта же точка зрения, одновременно сформулированы требования к химическому составу оксида алюминия, обеспечивающему его максимальную кислотность. Кислотность оксида алюминия зависит также от содержания в нем щелочноземельных и особенно щелочных металлов (натрия). На примере реакций изомеризации олефинов установлена зависимость между содержанием натрия в оксиде алюминия и изомеризующей активностью и кислотностью. Максимальные активность в реакции изомеризации олефинов и кислотность соот-вествуют минимальному содержанию натрия в оксиде алюминия. Каталитическую активность оксида алюминия в реакциях кислотного тлпа можно усилить путем введения в его состав галогенов. Единое мнение о характере взаимодействия оксида алюминия и галогенов заключается в том, что поверхностные гидроксильньге группы оксида алюминия и, возможно часть атомов кислорода замещаются ионами хлора и фтора. Природа ак тивных центров оксида алюминия, возникающих при введении галогена и механизм влияния фтора и хлора на его поверхностную кислотность являются предметом дискуссии. Согласно Ал. А. Петрову [5, с. 72], ок сид алюминия, обработанный хлороводородом, увеличивает кислотность и приобретает каталитическую активность в том случае, когда хлорид-ион замещает одну из парных гидроксильных групп, причем водород другой гидроксильной группы, благодаря соседству электроотрицательного атома хлора, становится подвижным и способным к диссоциации в форме протона. При замещении галогеном одиночной гидроксильной группы активный центр не образуется. Структура активного центра хлорзаме-щенного оксида алюминия может быть представлена формулой [c.44]


    Процесс разработан с целью получения высококачественных дизельных топлив [137. 138] и был реализован на дооборудованной типовой установке гидроочистки дизельного топлива Л-24н6 Рязанского НПЗ. В качестве катализатора использован сероустойчивый модифицированный галогеном катализатор гидроочистки. Эта особенность катализатора обусловила наличие в технологической схеме установки (рис. 4.12) узлов осушки сырья и циркулирующего газа, а также обработки катализатора галогенсодержащими соединениями с целью поддержания его каталитической активности на постоянном уровне. Унос галогена из катализатора связан с наличием в системе паров воды, попадающих преимущественно с сырьем. Жесткие условия процесса гидроизомеризации температура проведения процесса 420 °С и проведение периодической окислительной регенерации катализатора при 550 °С способствуют удалению галогена из катализатора в виде НС1, в результате чего снижается изомеризующая активность и усиливается коррозия технологического оборудования. [c.125]

    Кислотные свойства катализатора определяют его крекирующую и изомеризуюшую активность, а также глубину превращения сырья. Для усиления кислотной функции катализатор, как правило, промо-тируют галогеном, что способствует замедлению реакции крекинга, стабилизует высокую дисперсность платины. В качестве кислотного промотора в состав АП—56 входит фтор, остальные отечественные катализаторы промотированы хлором. [c.10]

    Литий — одновалентный металл, энергично разлагающий воду с образованием щелочи. За литием идет бериллий — тоже металл, но двухвалентный, медленно разлагающий воду при обычной температуре. После бериллия стоит бор — трехвалентный элемент со слабо выраженными неметаллическими свойствами, проявляющий однако 1и которые свойства металла. Следующее место в ряду занимает углерод — четырсхвалентный неметалл. Далее идут азот — элемент с довольно ])езко выраженными свойствами неметалла кислород — типичный неметалл наконец, седьмой элемент с1)тор — самый активный из неметаллов, принадлежащий к группе галогенов. [c.48]

    Сравнение химических свойств галогенов показывает, что их жислительная активность последовательно уменьшается от фтора < астату. Этот эффект проявляется в способности более легких галогенов виде простых веществ окислять галогенид-ионы более тяжелых галогенов и в способности более тяжелых галогенов вос-станаолиаать кислородные соединения более легких галогенов  [c.357]

    Молекула метана характеризуется сравнительно большой проч ностью. При обычных условиях метан активно (со взрывом) pea гирует с фтором, очень медленно взаимодейстпует с хлором почти не реагирует с бромом. Реакция с хлором или бромом уско ряется под действием света, а также при пагреванни и заклю чается в последовательном замещении атомов водорода атомам галогена с образованием галоген произвол ных, например [c.467]

    Каталитическая активность окиси алюминия существенно зависит также от наличия на ее поверхности воды, щелочей, галогенов и минеральных кислот. При увеличении количества хемосорбиро-ванной воды на поверхности АЬОз ее активность падает [17]. С повышением температуры предварительной термообработки катализатора от 550 до 800 °С степень превращения бутена-1 в бу-тены-2 растет с 9 до 82%. Нанесение на окись алюминия КОН (или NaOH) приводит к большей селективности образования цис-бутена-2 из бутена-1. Однако степень превращения бутена-1 на таких катализаторах меньше, чем на чистой окиси алюминия (см. табл. 42). [c.147]

    В виде мелких частиц Ln пирофорны (из сплава Ре -f- 30% Се изготовляют кремни зажигалок). Они активно взаимодействуют с кислородом, азотом и мг[огими другими элементными веществами. Значения AGf оксидов и галогенидов Ln весьма велики, поэтому при сильном нагревании Ln вытесняют большинство металлов из их соединений с кислородом и галогенами. [c.604]

    Канал (б) мо>1<ег быть эффективным и в прямых обменных реакциях (см. 21). Так, механизм дезактивации через обмен был предложен также для интерпретации б лстрой релаксации Н2 на Н, галогеноводородов на Н и молекул галогеЕюв на атомах галогенов [5, 527]. Расчет вероятности дезактивации в процессе (14.7) в общем случае столь же сложен, как и расчет вероятности прямых реакций обмена (см. 21), причем здесь решающее значение имеет воличпна энергии активации. Теоретические исследования динамики данных столкновений показывают, что очень часто эффективности каналов (а) и (б) оказываются сравнимыми и намного превышающими эффективность простого К7 -процесса, вероятность которого оценена по формуле (14.2). Безусловно, здесь важную роль играют те особенности поверхности потенциал .ной эпергии, которые отличают взаимодействия химически инертны. п химически активных партнеров. В частности, большая эффективность кана.1а (п) связана с тем, что соответствующие ему траектории не отталкиваются от барьера (как при простом УГ-процессе), а дважды его пересекают — н прямом и обратном панравлении [3271. [c.91]

    Отметим, что, как было показано в работе [579], при фотохимической активации молекул О2 в области дискретного поглощения (X = 1849,6 А) в результате предиссоциации в качестве первичных активных центров образуются атомы О, как ч области сплошного поглощепия подобно тому, как это имеет место для галогенов. [c.167]

    Реакция внутримолекулярного циклоалкилирования привлекает внимание исследователей как метод синтеза индановых и нафталиновых углеводородов, потребность в которых для промышленных целей заметно возрастает. На преимущественное образование бензоцикленовых углеводородов с пяти-, шести- или семичленными циклами основное влияние оказывает длина и строение углеродной цепочки алкильного заместителя, а также природа активного центра — наличие двойной связи, галогенов или гидроксильных групп. Заметную роль в направленности атаки ароматического ядра и структуры образующегося кольца играют стерические эффекты и эффекты взаимодействия арома -тической группы с катионным центром. Катализаторами такой реакции могут быть как протонные кислоты, так и кислоты Льюиса. [c.123]

    Принципиальная разница между различными нромышленны-ми процессами газификации заключается в выборе соответствующего катализатора для первой ступени газификации. В процессе Газинтан по-прежнему применяется никелевый катализатор с очень высокой активностью и, следовательно, с очень высокой чувствительностью к загрязнению соединениями серы, галогенами, кислородом, свинцом (из тетраэтилсвинца в бензине) и др. Благодаря высокой активности катализатора входная температура смеси паров лигроина с водяным паром на входе в реактор может быть снижена до 400°С. Кроме того, по данным фирмы, минимально допустимое отношение пар-лигроин, используемое в процессе Газинтан , ниже, чем для конкурирующих процессов, [c.107]


Смотреть страницы где упоминается термин Галогены активность: [c.206]    [c.187]    [c.193]    [c.367]    [c.374]    [c.89]    [c.54]    [c.370]    [c.130]    [c.124]    [c.148]    [c.149]    [c.222]   
Основы общей химии Том 2 Издание 3 (1973) -- [ c.271 , c.276 ]




ПОИСК







© 2025 chem21.info Реклама на сайте