Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Галогены устойчивость

    По сравнению с хлором фтор F гораздо более активен. Он реагирует почти со всеми химическими элементами, со щелочными и щелочноземельными металлами даже на холоде. Некоторые металлы (Mg, Al, Zn, Fe, Си, Ni) на холоде устойчивы к действию фтора из-за образования пленки фторидов. Фтор — самый сильный окислитель из всех известных элементов. Он единственный из галогенов не способен проявлять положительные степени окисления. При нагревании фтор реагирует со всеми металлами, в том числе с золотом и платиной. Он образует ряд соединений с кислородом, причем это единственные соединения, в которых кислород электроположителен (например, дифторид кислорода OFa). В отличие от оксидов эти соединения называют фторидами кислорода. [c.108]


    Инертные газы инертны потому, что на них заканчивается заполнение -Г0 слоя, а такие системы особенно компактны и устойчивы. По той же причине атомы щелочных металлов водородоподобны. Они содержат один электрон сверх заполненных слоев, образующих компактный остов. Особой устойчивостью заполненных слоев объясняется и высокое сродство к электрону у галогенов. Атом бериллия не похож на атом гелия потому, что он легко возбудим в состоянии то вре- [c.182]

    Сравнение процесса диссоциации молекул различных галогенов провели Вике и Франк они показали, что при диссоциации фтора изменение энтропии оказывается больше, чем для остальных галогенов. Значительное изменение энтропии при диссоциации фтора Рг 2 F объясняется особой устойчивостью электронной структуры молекулы фтора. Вследствие этого число вращательных и колебательных уровней молекулы фтора сравнительно невелико, а следовательно, остается очень небольшим и соответствующее значение энтропии молекулярного фтора. Поэтому при появлении возможности поглощения энергии за счет поступательной энергии образовавшихся атомов энтропия увеличивается в большей степени. Таким образом, при одной и той же температуре степень диссоциации фтора оказывается больше, чем, например, степень диссоциации иода, хотя энтальпия диссоциации фтора (ДЯ = 156,6 кДж/моль) примерно на 8 кДж больше, чем энтальпия диссоциации иода (АЯ =149 кДж/моль). Эта относительно более сильная диссоциация фтора —одна из причин его большей реакционной способности. [c.428]

    Атом серы 5, как и атом кислорода, имеет шесть валентных электронов (35 3/) ). Сера — типичный неметаллический элемент. По электроотрицательности (ЭО = 2,5) она уступает только галогенам, кислороду, азоту. Наиболее устойчивы четные степени окисления серы (—2, +2, -j-4 и +6), что объясняется участием в образовании химических связей двух непарных электронов, а также одной или двух электронных пар  [c.322]

    В реакциях замещения галогена алкилгалогенидов заместитель (нуклеофил) алкилируется, а галоген уходит в виде аниона. Анионы галогенов устойчивы, их образование не связано с существенными энергетическими затратами и они уступают по нуклеофильности вновь вступающему заместителю. Говорят, что галогены являются хорошими уходящими группами . [c.178]

    С галогенами силаны взаимодействуют со взрывом. Силаны — кислотные гидриды, о чем свидетельствует характер их взаимодействия со щелочами (см. выше). При этом разложение силанов происходит активно даже в присутствии следов щелочи. В нейтральной и кислой среде кремневодороды довольно устойчивы. [c.416]

    Символ Нд серебристо-белый, блестящий, единственный жидкий при комнатной температуре металл обладает низкой электропроводностью, значительно увеличивающейся при температуре застывания сильный яд. На воздухе проявляет устойчивость не реагирует с больщинством разбавленных кислот, однако медленно взаимодействует с разбавленной азотной кислотой с окисляющими кислотами образует соли реагирует также с серой и галогенами со многими металлами дает сплавы (амальгамы). [c.168]

    Строение внешнего электронного слоя атомов хлора, брома, иода rts p . Для всех рассматриваемых элементов возможен переход атомов в возбужденные состояния, отвечающие w > 0 этим они отличаются от фтора. Если для F единственной ненулевой степенью окисления является —1, то для остальных галогенов она лишь наиболее устойчивая. 7 [c.474]

    В отличие от принятых ранее представлений, опытные данные приводят в настоящее время к заключению, что устойчивая конфигурация электронной оболочки может достигаться не только при полном присоединении электрона (типично ионная связь), но и при связывании его путем образования соответствующей полярной связи. Типично ионная связь образуется только между щелочными металлами и галогенами (и то главным образом между элементами, которые наиболее сильно различаются по своей электроотрицательности). При переходе же к более центральным группам периодической системы это различие постепенно уменьшается. [c.59]


    Наиболее распространены карбоциклические соединения с пятью и шестью атомами углерода в цикле. Они отличаются большой устойчивостью и, подобно алифатическим углеводородам, взаимодействуют лишь с ограниченным числом реагентов по гомолитическому механизму без размыкания цикла. Например, им свойственна реакция металепсии — взаимодействие с галогенами при облучении  [c.474]

    При указании на различные, иногда очень высокие, степени окисления речь идет лишь о смещении электронов, и в действительности, например, ион СГ+ не существует. Перемещение 5- или р-электронов на -орбиталь приводит к появлению новой, частично заполненной -орбитали, причем - или р-орбитали становятся также лишь частично заполненными. Тем самым оказывается возможным образование еще двух ковалентных связей и поэтому у галогенов следует ожидать преимущественной устойчивости нечетных степеней окисления —1, +1, +3, +5 и +7. Известно лишь немного соединений, в которых галогены имеют степени окисления -1-4 и - -6. [c.503]

    Присоединение по радикальному механизму протекает через образование наиболее устойчивого свободного радикала. Радикал (1) в результате сопряжения свободного электрона с электронами пяти С—Н-связей будет более устойчивым, чем (2). При его взаимодействии с галогеном образуется дигалогенопроизводное  [c.68]

    Объясняется это тем, что из двух возможных промежуточных карб-катионов СНз—СН—С 1 и СНг—СНа—С1 более устойчивым, а значит, и более вероятным будет первый, так как его положительный заряд частично компенсируется сопряжением с галогеном  [c.101]

    Устойчивее соединения галогенов в степени окисления - -5. Иод образует ЬОд и устойчивую йодную кислоту НОЮг. [c.503]

    Как и для соединений других элементов, находящихся в состоянии окисления, промежуточном между высшим и низшим (см. также кислородные соединения галогенов), для соединений селена(1У) и теллура(1У) можно ожидать протекания реакций диспропорционирования. Такая реакция для сульфит-иона сопровождается окислением до устойчивого оксокомплекса— сульфат-иона и восстановлением до сульфид-иона с законченной октетной электронной конфигурацией атома серы. Диспропорционирование катализируется платиновой чернью. [c.522]

    Галогенид-ионы образуются при восстановлении галогенов. Возможность их присутствия в виде ионов, например в водном растворе, зависит от величины парциального отрицательного заряда. Присоединение электрона к атому галогена (с образованием конфигурации s p ) сопровождается выделением энер-хии, и поэтому галогенид-ионы весьма устойчивы. [c.498]

    Соединения галогенов в степени окисления +7 вследствие симметричного строения молекул и максимального координационного числа устойчивы (исключение НВгО-)). [c.503]

    Дайте объяснение устойчивости галогенных комплексов ртути в рампах теории жестких и мягких кислот и оснований. [c.512]

    Из соединений марганца с галогенами устойчивы только дигалиды МпГз, а остальные его галиды легко разлагаются на дигалид и свободный галоген. [c.249]

    Как видно из этой диаграммы, по своему поведению в растворах НС1 возрастаюш ей концентрации все элементы можно разбить на четыре класса [127] 1 элементы, не поглощаемые во всем интервале концентраций НС1 вплоть до 12 М 2) элементы, поглощение которых монотонно возрастает с увеличением концентрации НС1 3) элементы, поглощение которых при увеличении концентрации НС1 проходит через максимум 4) элементы, поглощение которых монотонно уменьшается с увеличением концентрации HG1. Непоглощаемые или слабо поглощаемые элементы — элементы первого и четвертого класса — не образуют в НС1 анионных хлорокомплексов и в результате исключаются из фазы ионита под действием потенциала Доннана. Таковы, например, катионы щелочных, щелочноземельных и редкоземельных металлов. Элементы, коэффициенты распределения которых с ростом концентрации НС1 уменьшаются, существуют во всем интервале концентраций HG1 в виде устойчивых анионов. Уменьшение коэффициентов распределения для этих элементов объясняется, по крайней мере качественно, законом действия масс [см. уравнение (11)]. К этому классу принадлежат, например, ионы галогенов, устойчивые кислородные анионы ReO , ТеО , IO4 и др., а также те металлы дополнительных подгрупп, которые образуют очень прочные анионные хлорокомплексы даже при низких концентрациях HG1, как, например, Аи(1П), Tl(III), Pt(IV), Hg(II), Ag(I), Ir(IV) и Pd(II). Чтобы понять поведение элементов второго и третьего классов, необходимо наряду с равновесием ионного обмена рассмотреть соответствующие равновесия [c.236]

    Изменение устойчивости фторокомплексов в группе аналогичных элементов подчиняется сложным зависимостям, так как на нее влияет не только изменение энергии взаимодействия центральных атомов с аддендами, но и изменение энергий гцдратации, устойчивост/ валентностей и роли пространственных затруднении, как указано выше, при переходе от элементов второго периода к их аналогам в третьем периоде устойчивость их комплексов падает в начале и возрастает в конце периода. При электростатической связи, характерной для элементов начала периодов, устойчивость их фторокомплексов падает сверху вниз . Для многих переходных элементов и галогенов устойчивость фторокомплексов возрастает сверху вниз . [c.204]

    Вследствие повышенной кратности связи молекула N0 достаточно устойчива, и ее распад становится заметным лишь при 500°С. Оксид азота (П) — химически активное соединение, легко восстанавливается (при действии ЗОз, Сг +) в растворах до ЫНдОН и НдЫ с водородом образует гремучую смесь. Легко окисляется кислородом, галогенами и др.  [c.360]

    Вследствие довольно высокой активности марганец легко окисляется, в особенности в порошкообразном состоянии, при нагревании кислородом, серой, галогенами. Компактный металл на воздухе устойчив, так как покрывается оксидной пленкой, которая препятствует дальнейшему оксилению металла. Еще более устойчивая пленка образуется при действии на Мп холодной азотной кислоты. Технеций и рений вступают в химическое ваимодействие с неметаллами при достаточно сильном нагревании. Так, при 400° С они сгорают в атмосфере кислорода, образуя Э2О,. [c.570]

    В каждом периоде периодической таблицы наблюдается общая тенденция к возрастанию энергии ионизации с увеличением порядкового номера элемента. Сродство к электрону оказывается наибольшим у кислорода и галогенов. Атомы с устойчивыми орбитальными конфигурациями.(s , s p , s p ) имеют очень небольшое (часто отрицательное) сродство к электрону. Расстояние между ядрами двух связанных атомов называется длиной связи. Атомный радиус водорода Н равен половине длины связи в молекуле Hj- В каждом периоде периодической таблицы наблюдается в общем закономерное уменьшение атомного радиуса с ростом порядкового номера элемента. Электроотрицательность представляет собой меру притяжения атомом электронов, участвующих в образовании связи с другим атомом. При соединении атомов с си.пьно отличающейся электроотрицательностью происходит перенос электронов и возникает ионная связь атомы с приблизительно одинаковой электроотрицательностью обобществляют электроны, участвующие s сбразовашг. ковалентной связи. Между атомами типа Н и F с умеренной разностью электроотрицательностей образуется связь с частично ионным характером. [c.408]


    В различных вариантах таблицы Периодической системы водород включается либо в первую, либо в седьмую группы элементов, либо одновременно в обе. Более обосновано помещение водорода в седьмую группу. Подобно галогенам, он способен присоединять. тишь один электрон до завершения устойчивой электронной конфигурации. При этом водород, как и галогены, образует солеподобные соединения с наиболее актигин ,1ии металлами (гидриды), например NaH, СаНг. Гидриды — ионные соединения, п которых отрицательным ионом является Н . Ближе к галогенам водород и по физическим свойствам. [c.206]

    Важнейшее отличие кремния от углерода заключается в том, что Si имеет большее число внутренних электронов. Следствием этого является неспособность двух атомов кремния сблизиться достаточно сильно, чтобы между ними могла возникнуть двойная или тройная связь. Кремний образует силаны, аналогичные алканам, которые будут обсуждаться в разд. 21-3. Силаны имеют общую формулу Si H2 + 2- Наиболее длинную цепь из всех полученных до сих пор силанов имеет гексасилан (рис. 21-7). Подобно азотоводородам, силаны обладают опасно высокой реакционной способностью. Простейшие силаны устойчивы в вакууме, но все они самопроизвольно возгорают на воздухе и все со взрывом реагируют с галогенами. Силаны обладают сильными восстановительными свойствами. [c.278]

    Ре, Со, N1 при нагревании реагируют. с кислородом, галогенами, азотом, серой и многими другими неметаллами. Особенно легко происходит взаимодействие железа с хлором, поскольку образующийся РеСЬ при слабом нагревании летуч и не создает на поверхности металла защитной пленки. Наоборот, фториды данных металлов нелетучи (вследствие значительной ионности связи Э—Р), поэтому Ре, Со и особенно N1 при не слишком высоких темлерату-рах устойчивы к действию фтора. Никель не разрушается фтором даже при температуре красного каления из него изготовляют аппаратуру, работающую в атмосфере Рг. [c.559]

    Значительное выделение тепла АНт С 0) при образовании галидов натрия можно рассматривать как критерий их устойчивости относительно простых веществ, а возрастание этой величины в ряду Nal—NaBr—Na l—NaF — как свидетельство увеличения химического сродства галогенов к натрию с уменьшением их порядкового номера (различие в агрегатном состоянии галогенов не отражается на ходе значений ДЯгэя). Оба вывода отвечают действительности. [c.52]

    Со всеми галогенами олово и свинец взаимодействуют с образованием тетрага.иидов. Но тетрабромид,и тетраиодид свинца неустойчивы, поэтому при действии брома и иода на свинец получаются дибромид и дииодид. Реакции начинаются уже на холоду и идут энергично при сравнительно небольшом нагревании. На воздухе при обычной температуре олово вполне устойчиво, свинец же постепенно покрывается оксидной пленкой, которая предохраняет его от дальнейшего окисления. При пягревапии подвергается окислению и олово. Олово и свинец легко взаимодействуют с серой, образуя соответствующие сульфиды с селеном и теллуром они взаимодействуют при нагревании, с азотом непосредственно не соединяются с большинством металлов образуют сплавы, содержащие, как правило, иитерметаллические соединения. [c.341]

    По уменьшению термической устойчивости безводные оксонитраты (V) располагаются в следующий ряд нитраты щелочных металлов (575—675°С) нитраты щелочноземельных металлов (575—560°С) нитраты кобальта (II), никеля (II), меди (II), цинка (II) (270—350°С) бериллия (125°С) xpoiwa (III) (50°С) нитрат водорода (на свету при обычных условиях) нитраты галогенов (I) (—10, —0°С). [c.68]

    Из тетрагалидов 3HaU хлориды, бромиды и иодиды в твердом состоянии имеют молекулярные решетки. Устойчивость тетраэдрических молекул 3Hali обусловливается л-связями, образованными за счет свободных орбиталей атомов Э и неподеленных электронных пар атомов галогенов  [c.502]

    С термодинамической точки зрения. можно предполагать, что-на устойчивость гипогалогенит-ионов в приеутствии ОН -ионов. должно оказывать существенное влияние их способность к дальнейшему диспропорционированию. При этом термодинамически наиболее вероятно диспропорционирование до галогенат-ионов (табл. В.26). Следует также отметить, что на равновесие реакций диспропорционирования галогенов и гипогалогенитов сильно влияет изменение температуры. Несмотря на тО что константа равновесия реакций диспропорционирования хлората на перхлорат и хлорид достаточно велика (табл. В.26), в растворах при 100 °С реакция идет очень медленно. Это еще один пример-того, что при рассмотрении хода реакций следует учитывать как термодинамические, так и кинетические факторы. Броматы и иодаты в водных растворах при нормальных условиях не диспропорционируют. [c.506]

    На примере галогенных и псевдогалогенных комп лексов ртути(П) можно убедиться в справедливости эмпирической закономерности (верной и для многих других комплексов) устойчивость комплексов увеличивается при возрастании деформируемости анионов  [c.653]


Смотреть страницы где упоминается термин Галогены устойчивость: [c.14]    [c.298]    [c.500]    [c.527]    [c.354]    [c.408]    [c.478]    [c.166]    [c.162]    [c.222]    [c.367]    [c.42]    [c.547]    [c.617]   
Основы общей химии Том 2 Издание 3 (1973) -- [ c.281 ]




ПОИСК







© 2025 chem21.info Реклама на сайте