Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Золото т электронное строение

    Подгруппа элементов медь — серебро — золото. Строение атомов, сравнен ние структуры электронных оболочек атомов щелочных металлов н атомов элементов подгруппы меди. Аналогия и различие в свойствах этих металлов. Положение меди, серебра и золота в ряду напряжений. Отношение этих металлов к кислороду, воде и кислотам. Растворение золота в царской водке. Окислы и гидроокиси. Важнейшие соли. Окислительные свойства ионов благородных металлов. Комплексные соединения. [c.189]

    Медь, серебро и золото несколько выпадают из общей для переходных металлов закономерности по своему электронному строению с валентной конфигурацией Они характеризуются более низкими температурами плавления и кипения, чем предшествующие им переходные элементы, и являются довольно мягкими металлами. Проявление таких свойств соответствует закономерной тенденции к ослаблению металлических связей, обнаруживаемой начиная с группы У1Б(Сг-Мо- У). Эта тенденция объясняется постепенным уменьшением числа неспаренных -электронов у атомов металлов второй половины переходных рядов. Медь, серебро и золото обладают очень большой электро- и теплопроводностью, поскольку их электронное строение обусловливает высокую подвижность 5-электронов. Эти металлы ковки, пластичны и инертны и могут находиться в природе в металлическом состоянии. Они встречаются довольно редко и поэтому имеют высокую стоимость, но все же распространены значительно больше, чем платиновые металлы. Относительно большая распространенность и возможность существования этих металлов в природе в несвязанном виде послужили причиной того, что они явились первыми металлами, с которыми познакомился чёловск и кошрые иН научился обрабатывать. По-видимому, первым металлом, который стали восстанавливать из его руды, была медь. Металлургия началась с открытия того, что сплав меди с оловом (естественно встречающаяся примесь) дает намного более твердый материал - бронзу. Медные предметы были найдены [c.446]


    Несмотря на сходство в электронном строении атомов, которые имеют один s-электрон над заполненной af-оболочкой, и высокие потенциалы ионизации, сходство между серебром, золотом и медью весьма ограниченно. Оно состоит в следующем  [c.517]

    Следует иметь в виду, что последняя схема (как и сами правила Клечковского) не отражает частных особенностей электронной структуры атомов некоторых элементов. Например, при переходе от атома никеля (2 = 28) к атому меди Z = 29) число Зй-электронов увеличивается не на один, а сразу на два за счет проскока одного из 4 -электронов на подуровень Зй. Таким образом, электронное строение атома меди выражается формулой Аналогичный проскок электрона с внешнего - на -подуровень предыдущего слоя происходит и в атомах аналогов меди — серебра и золота. Это явление связано с повышенной энергетической устойчивостью электронных структур, отвечающих полностью занятым энергетическим подуровням (см. 34). Переход электрона в атоме меди с подуровня 4х на подуровень Зс/ (и аналогичные переходы в атомах серебра и золота) приводит к образованию целиком заполненного -подуровня и поэтому оказывается энергетически выгодным. [c.98]

    Строение электронных уровней атомов благородных металлов характеризуется почти полной или даже полной застройкой /-подуровня предпоследнего уровня. Способность к укомплектованию -подуровня 10 электронами особенно проявляется у атома палладия за счет перехода двух электро1[ов с подуровня 5д (см. табл. 1.1 Приложения). У элементов с четными атомными номерами известно много устойчивых изотопов у рутения и осмия по семь, у палладия и платины по шесть, а у элементов с нечетными атомными номерами — немного у родия и золота по одному, у серебра и иридия по два. Кроме устойчивых у этих элементов известно много радиоактивных изотопов. [c.324]

    Атом давно перестал быть неделимым. После открытия естественной радиоактивности, катодных лучей и электронов были предложены первые модели строения атомов. Согласно модели первооткрывателя электрона Томсона (1904) атом представляет собой сферу положительного электричества одинаковой плотности пО всему объему диаметром порядка 0,1 нм. Электроны как бы плавают в этой сфере, нейтрализуя положительный заряд. Колебательное движение электронов возбуждает в пространстве электромагнитные волны. Экспериментальную проверку этих наглядных представлений предпринял английский физик Эрнест Резерфорд в-своих знаменитых опытах по рассеянию а-частиц (ядра атома гелия). Схема установки Резерфорда (1907) приведена на рис. 8. Радиоактивный препарат Р излучает а-частицы ( снаряды ) в виде узкого пучка, на пути движения которого ставится тонкая золотая фольга Ф. Регистрация а-частиц, прошедших через фольгу, производится микроскопом М на люминесцирующем экране Э по вспышке световых точек сцинтилляция). Если модель атома Томсона верна, а-частицы не могут пройти даже через очень тонкую фоль- [c.31]

    Атомы этих элементов имеют на внешнем уровне по одному 5-электрону (табл. 26). Отличие в строении атомов элементов побочной подгруппы от главной состоит в том, что на предвнешнем энергетическом уровне атомы имеют кроме 5- и р- еще и -электроны. В связи с этим элементы подгруппы меди в соединениях проявляют не только степень окисления +1, но и более высокие степени окисления. Для меди наиболее характерны соединения с высшей степенью окисления +2, а для золота - -3. Способность атомов меди и золота отдавать два и гри электрона объясняется тем, что орбитали 3с1 и 4х меди, 5(1 и б5 золота близки по энергиям. Для серебра характерны соединения со степенью окисления +1 ч [c.413]


    Платиновые металлы и золото — элементы 5- и 6-го больших периодов периодической системы Д. И. Менделеева. Сходство химических свойств этих элементов объясняется строением их электронных оболочек и расположением внешних электронов (табл. 2). [c.7]

    В дополнение следует указать, что важное значение имеет электронное строение металла наилучшими катализаторами гидрирования являются переходные металлы с незаполненными электронными уровнями в зонах 3 , и 5< , на которые могут переходить валентные электроны атомов Н [19] . Сравнительно малая активность меди, серебра и золота при гидрировании объясняется тем, что у этих металлов указанные зоны являются заполненными . Более того, можно ожидать, что любой фактор, способствующий заполнению й-зоя у металлов 8-й группы, приведет к соответствующему уменьшению их активности [79а] так, например, активность никеля в сплавах N1—Си уменьшается в зависимости от заполнения Зс -зоны валентными электронами меди [80]. Подобным же образом на сплавах Юм-Розери в области существования а-фаз энергия активации увеличивается с ростом избыточного числа электронов твердого растворителя. Согласно Швабу [6], энергия акти- [c.382]

    Известны соединения меди в степенях окисления +1, +2 и +3. Последние, однако, малочисленны и ограничиваются простми и сложными оксидами и фторидами. Гораздо более распространены соединения меди (I) и меди (II). Соединения одновалентной меди менее устойчивы и похожи на аналогичные соединения серебра и золота (I). Соли двухвалентной меди по свойствам гораздо ближе к солям других двухзарядпых катионов переходных металлов. Эти особенности меди неразрывно связаны с ее электронным строением. Основное состояние атома меди 3< 4з обусловлено устойчивостью заполненной а -оболочки (ср. с атомом хрома), однако первое возбу кденное состояние 3d 4s превышает основное по энергии всего на 1,4 эВ (около 125 кДж/моль). Поэтому в химических соединениях проявляются в одинаковой мере оба состояния, дающие начало двум рядам соединений меди (I) и (II). [c.159]

    Однако положительные однозарядные ионы этих элементов, в виде которых все они (кроме водорода) большей частью содержатся в соединениях, различаются по числу электронов на внешнем уровне. Ион водорода Н представляет собой ядро атома, полностью лишенное электронной оболочки ион лития имеет два электрона, ионы натрия, калия, рубидия, цезия и франция содержат на внешнем уровне по 8 электронов, а однозарядные ионы меди, серебра и золота — по 18 электронов. Различия в строении электронной оболочки ионов являются одной из причин значительного отличия свойств меди, серебра и золота (и их соединений) от свойств остальных элементов первой группы (и их соединений). [c.48]

    Ряд напряжений. При погружении металлической пластинки в воду (или раствор соли данного ме талла) под действием полярных молекул воды -ионм металла частично отрываются от поверхности пластинки. В результате этого на поверхности металла остается некоторое количество избыточных электронов. Гидрати рованные (окруженные молекулами воды) ионы металла размещаются вблизи поверхности металлической пластинки. Возникает двойной электрический слой. Образующаяся при этом разность потенциалов между мег таллом и раствором называется электродным потенциаг лом металла (рис. 37). В зависимости от химической природы металлов (строения их атомов, склонности их ионов к гидратации) различные металлы посылают в растворы разные количества ионов и, следовательно, на их поверхности остается неодинаковое число электронов. Так, у меди, ртути, серебра, золота и некоторых других металлов способность посылать ионы в растворы выражена очень слабо. [c.138]

    Роль электронного строения компонентов приобразова-и твердых растворов на основе железа установлена дале-не однозначно, во всяком случае, электронная теория ог-ниченных твердых растворов в сплавах железа еще да-ка от подобной теории для твердых растворов на основе агородных металлов (электронные соединения на основе ди, серебра и золота). Роль сродства к электрону для ердых растворов в сплавах железа освещена в трудах К- Григоровича. [c.37]

    Часто каталитическая активность металлов сопоставляется с наличием вакансий в -зоне металла. Так, для реакций с участием молекулярного водорода (гидрирование, дейтеро-водородный обмен, о-п-превращение) Боресковым 114] было установлено, что удельная каталитическая активность растет с заполнением -зоны металла, т. е. с уменьшением числа неспаренных электронов в -зоне, и достигает максимума у последних металлов VHI группы периодической системы элементов. Завершение заполнения -зоны при переходе от никеля к меди или от платины к золоту приводит к резкому снижению каталитической активности. При полном заполнении -уровней металлы совсем теряют каталитическую активность. Используя в качестве характеристики электронного строения переходных металлов критерий недостроенности их -электронного подуровня , Самсонов [115] получил удовлетворительную корреляцию между этой величиной и скоростью гидрирования этилена на пленках различных металлов. [c.64]

    Металлы — хорошие проводники тепла и электричества. При прохождении электрического тока через металлические проводники не происходит переноса частиц металла (электронная проводимость, или проводимость первого рода). По способности проводить тепло и электричество металлы располагаются приблизительно в одном и том же порядке лучшие проводники — серебро и медь, затем золото, алюминий, железо и худшие — свинец и ртуть. Следовательно, между теплопроводностью металлов и их электропроводностью наблюдается почти постоянное соотношение. Металлы имеют кристаллическое строение. Представляют собой совокупность множества кристалликов микроскопических размеров (кристаллиты) в 1 см металла их содержится многие миллионы. Отдельно взятый кристаллит анизотропен (гл. 7, 1). В результате многочисленности кристаллитов в единице объема металла векторы анизотропии, направленные хаотично, взаимно компенсируются, и кусок металла в итоге проявляет свойство изотропности — равенство свойств в различных направлениях. Такие тела называют квазиизотропными. Следовательно, металлы по своей внутренней структуре квазиизотропны. [c.327]

    При полном тождестве строения внешнего электронного слоя атомы элементов I группы по строению второго снаружи электронного слоя различаются между собой атомы натрия, калия, рубидия и цезия на предпоследнем электронном слое имеют 8 электронов (у лития—2), а атомы медн, серебра и золота на том же слое содержат по 18 электронов (см. таблицы в 5 и 6 настоящей главы). Это обстоятельство оказывает большое влияние на свойства элементов I группы и лежит в основе их деления на две подгруппы 1) главную—питий, натрий, калий, рубидий и цезий, и 2) побочную— медь, серебро и золото. [c.344]

    Можно получать как одноступенчатые, так и двухступенчатые реплики. В первом случае реплику получают путем отложения материала непосредственно на образец, во втором — на, поверхность образца наносят пластический материал для предварительного отпечатка, воспроизводящего рельеф затем реплику сниыаюг с поверхности этого отпечатка и исследуют в микроскопе. Повышения контрастности реплики добиваются оттенением (отложение на объективе слоя материала с высокой рассеивающей способностью для электронов). Оттеняющий слой наносят под небольшим углом испарением материала в вакууме. Высокой контрастности достигаюг при использовании урана, вольфра(11а, золота, платины и других веществ. Иногда для оттенения применяют углерод. На рис. 136 дана схема двух основных способов получения углеродных реплик. На рис., 137 показана последовательность операций и возникновение изображения на экране при получении реплик с объектов, образованных контактирующими сферическими частицами. Это часто имеет место при исследовании кага лизаторов и носителей глобулярного строения [78]. [c.309]


    Строение электронных оболочек атомов меди, серебра и золота выражается формулой п—l)d °ns . На внешнем энергетическом уровне атома находится один электрон, однако в образовании химических связей могут принимать участие и электроны с d-подуровня пред-иоследнего уровня. Поэтому медь, серебро и золото могут проявлять в соединениях степени окисления +1, +2, Н-3 (золото также +4 н +5), ири этом для меди наиболее устойчивы соединения со степенью окисления +2, для серебра -fl, для золота +3. [c.248]

    Таким образом, в термодинамическом аспекте исследования эффекта траисвлияния в комплексных соединениях металлов 8-й группы, а теперь и золота и других переходных металлов сформировалось два подхода — 15 одном изучается атомная структура вещества, в другом изучаются особенности электронного строения. К первому подходу следует отнести, главным образом, рентгеноструктурный анализ, а также ИК-спектроскопию, ко втО рому — в основном рефрактометрический метод. Выще уже приводились примеры изменения длин связей в результате трансвлияния, которые дают хорошую иллюстрацию идеи Черняева о ионизации лиганда в трансположении к активному атому или радикалу. Однако табл. 112, к сожалению, не характеризует только траисвлияние, поскольку длины связей во внутренней сфере комплексных соединений зависят от многих факторов (состава и структуры), априорный учет которых пока еще невозможен. На колебательные спектры, помимо многочисленных структурных факторов, влияют еще и прочности связей, и массы колеблющихся атомов. [c.265]

    Озон (Тпл = 80,3 К Гкип= 161,1 К). Молекула озона Оз имеет угловое строение угол между связями равен 116°, длина связи 0 = 0, / = 0,1278 нм. Основное состояние молекулы Оз отвечает заполнению электронами молекулярных орбиталей (а ) (Яр х X (ор ) . Остальные электроны заполняют несвязующие орбитали. При нормальных условиях это газ синего цвета. Жидкий озон — темно-синего цвета. Стандартная теплота образования О3 АЯ = = 149,8 Дж/моль, т. е. это весьма непрочное соединение. Озон — сильнейший окислитель стандартный электродный потенциал О3 равен 2,07 В. Он способен окислить золото, платину и иридий, легко переводит сернистые соединения в сульфаты, аммиак — в нитриты и т. д., как это видно из приведенных ниже реакций  [c.426]

    Работы, посвященные расчетам методом ЧПДП электронного строения соединений, имеющих валентные -электроны, пока немногочисленны. Наиболее значительные — это, вероятно, расчеты Ван дер Люгта [241, 242] для серии комплексов палладия, платины и золота. В качестве базисных - и р-АО им были взяты одноэкспонентные функции Клементи и Раймонди [61, 62], для й-орбиталей использовались функции Ричардсона [64], Баша и Грея [243]. [c.108]

    Если атомы веществ А и В по их радиусам, строению электронных оболочек, энергиям связей близки друг к другу и поэтому могут заменять один другого в кристаллах, образующихся из расплавов (например, Ag и Аи), то возникают непрерывные (неограниченные) твердые растворы (см. гл. IV). Над кривой ликвидуса L (рис. 6) находится область расплава, под кривой солидуса S — область твердого раствора, между ними — область кристаллизации. Если охлаждать расплав, отвечающий по составу вертикали ФФ, до точки а , отвечающей температуре Тi, то начнут выпадать кристаллы состава bi. При охлаждении от точки до точки /Са кристаллы приобретают состав, отвечающий точке Ь , а расплав — точке aj. По мере охлаждения состав кристаллов изменяется по кривой >1 — 2 — 3. а состав расплава — по кривой — Oj — а а. В точке аз при расплав окончательно закристаллизуется. Отношение количеств выпаЕЩих кристаллов и расплава равно отношению отрезков Ка/КЬ по так называемому правилу рычага. Так характеризуется медленно протекающая кристаллизация в равновесных условиях, когда кристаллы успевают обмениваться веществом с расплавом и приближаются по составу к точке Ф. Если охлаждение идет быстро, то образуется механическая смесь кристаллов разного состава. Если удалить первые порции выделившихся кристаллов, то они окажутся обогащенными более тугоплавким компонентом В (например, золотом в системе Ag — Au). [c.36]

    Кроме того, все методы делятся на химические, физические и физико-химические [8]. На протяжении многих десятилетий, даже столетий, преобладали чисто химические методы, основанные на определении каких-либо атомов или групп атомов в составе данного вещества с помощью осаждения, взвешивания или титрования. Они могут быть качественными или количественными. Однако параллельно существовали, начиная со знаменитого опыта Архимеда по определению золота в короне, методы, которые мы сейчас называем физическими [4]. Все дискуссии по поводу сходства и различия химических и физических методов, - писал академик И.П. Алимарин, - основываются на ортодоксальном понимании этих двух наук и нежелании рассматривать их с единых современных позиций о строении материи и ее свойствах.. .. В науках (между науками) нет четких грашщ . На протяжении уже ряда десятилетий в развитии химии отчетливо проявляются тенденции к использованию различных физических методов исследования. Я полагаю, что в науке нет области с более обещающими открытиями, чем исследование химических явлений на основе физических методов и физических явлений , - говорил известный английский физик Дж. Томсон, открывший в начале XIX века электрон. [c.14]

    Охарактеризуйте строение атомов d-элементов I группы. Какова электронная конфигурация их предвпешних и внешних энергетических уровней в основном состоянии Какие орбитали в атомах меди, серебра и золота являются валентными  [c.140]

    При исследовании путей а-частиц с помощью прибора оказалось, что большинство частиц двигается по прямым (или почт прямым линиям). Однако отдельные частицы в определенных точках пути внезапно изменяют свое направление и далее двигаются под некоторым углом относительно первоначального направления. Подобные же явления были обнаружены Э. Резерфордом и его сотрудниками Г. Гайгером и Э. Марсденом методом сцинтилляций (1906—1909) при прохождении а-частиц через тонкую золотую фольгу. Основываясь на результатах этих исследований, Э. Резерфорд пришел к заключению, что атомы состоят из массивного ядра, положительно заряженного, вокруг которого по круговым орбитам движутся электроны. Ядро атома сравнительно с слоем электронов весьма мало. Впрочем, эта идея планетарного строения атома была в это время неновой. Еще в 1904 г. японский физик X. Нагаока математически рассчитал, что планетарная модель атома вполне реальна. [c.215]

    Одним из приемов выявления гетерогенности поверхности при электронно-микроскопическом исследовании является декорирование. Сущность этого приема заключается в том, что на поверхность наносится вещество, способное концентрироваться на некоторых деталях поверхности, например дефектах, делая их видимыми. При этом наблюдаются не сами дефекты, а частицы декорирующего вещества. Таким способом еще в 1947 г. с помощью капелек росы удалось наблюдать сложнейший рисунок поверхности зеркальногладкой грани карбида кремния и других кристаллов [288—290]. Для получения более стабильных образцов быстро испаряющаяся вода была заменена конденсатом хлорида аммония [288—290]. Однако наибольшее распространение получила предложенная Бессетом техника декорирования путем вакуумного распыления некоторых металлов (золота, платины) [291—297]. Метод декорирования поверхности напылением металла в вакууме позволяет не только наблюдать некоторые особенности строения поверхности, но и изучать динамику изменения поверхности при нагревании, под действием влаги и других факторов [243]. На рис. III.4 (см. вклейку) в качестве примера, иллюстрирующего возможности метода декорирования, приведен снимок поверхности скола минерала галита. [c.98]

    Аналогичные данные имеются и для других благородных металлов (платина, золото). Шишаков с сотрудниками [90] исследовал электронно-графическим методом поверхности этих металлов и установил строение образуюш,ихся окислов РЮа и АиОа- [c.31]

    Наличие -электронов у всех платиновых металлов и золота обусловливает переменную валентность этих элементов, а также способность и склонность их к комплексообразованию. Как видно из табл. 2, строение электронных оболочек золота близко к строению электронных оболочек платиновых металлов. Поэтому золото имеет общие черты с металлами платиновой группы, побудившие еще Д. И. Менделеева отнести его ТаблицаЗ одновременно в первую и в Характерные валентные состояния восьмую группы периодической платиновых металлов системы. Химические свойств1а [c.8]

    Теория строения атома Резерфорда. Уже давно предполагали, что испускаемый атомами свет может дать сведения о строении атома. Электромагнитные волны, к которым относится и свет, как показывает опыт, всегда являются следствием колебания электрических зарядов. Поэтому логично искать причину испускания света в колебаниях электрических зарядов или по крайней мере в аналогичных или связанных с колебаниями процессах. Электричество, как и материя, имеет дискретную природу. Наименьшие частички свободного отрицательного электричества называются электронами. Отношение массы электрона к массе легчайшего атома, атома водорода, равно 1 1837 (ср. стр. 135). В нейтральном атоме должно быть равное число электронов и положительных зарядов. Раньше считали, что положительное электричество распределено по всему объему атома, а электроны, так сказать, плавают в нем (томсоновская модель атома). Однако такая гипотеза не могла удовлетворительно объяснить движения электронов, проявляющееся в испускании света. Эта проблема получила совершенно иное объяснение, когда в 1911 г. Резерфорд, пытаясь истолковать результаты исследования отклонения а-лучей при прохождении их через вещество, проведенного Гейгером и Марсденом, пришел к выводу, что положительный заряд каждого атома должен быть сконцентрирован в очень малой области внутри атома. Эта область атома называется ядром. Диаметр ядра атома водорода не превышает 2-10 см, ядра атома золота — не больше 3-10" см, тогда как диаметр атома, рассчитанный, например, по плотности кристаллических веществ (ср. гл. 7), имеет порядок величины 10" см. [c.106]

    Показано, что максимумы каталитической активности для всех углеводородов приходятся на простейшие стехиометрические отпошсиия атомов палладия к золоту от 1 1 до 1 2, Природа носителя также не оказывает качественного влияния иа оби1,ий характер кривых зависимости активности от состава. Активирующее действие варьируемого компонента — золота определяется, прежде всего, природой активных компонентов, строением электронных оболочек их атомов, образованием лабильных (iTiPd- -nAu)-структур. [c.123]

    Вместе с тем мы наблюдаем, что общий характер кривых зависимости активности от состава катализаторов и положение экстремумов (см. рис. 1—3) практически не зависит от природы носителя, а также природы гидрируемого вещества. Максимальная активность (Р(1-ЬпАи)-бинарных систем приходится на простейшие стехиометрические отношения атомов палладия к золоту 1 1... 1 2. В интервале указанных отношений для обоих носителей при увеличении содержания золота скорость реакции гидрирования стирола повышается приблизительно в четыре раза по сравнению с чистым палладием. Дальнейшее увеличение концентрации золота мало изменяет скорость гидрирования ароматического соединения. Активирующее действие варьируемого компонента — золота можно объяснить, прежде всего, природой активных компонентов, строением электронных оболочек атомов, возможностью их спинвалентного взаимодействия и образованием лабильных (тРс1... пАи)-структур [1]. [c.53]

    На применяемых в настоящее время в качестве катодных материалов сплавах можно проследить влияние -характеристик ( вес -состояний, плотность коллективизированных электронов) на электрохимические свойства, материала. В сплавах Аи—Р1 с очень близкими значениями радиусов атомов, но с разным строением -подуровня ток обмена для разряда НзО - уменьшается с ростом содержания золота, достигая максимума для сплава с 60% (ат.). Для аналогичного сплава Си—N1 установлено изменение энергии активации и механизма электрогидрирования /г-нитробензойной кислоты. На сплавах, содержащих больше 60% (ат.), процесс идет по электрокаталитическому механизму, на сплавах с меньшим содержанием никеля — по электронному [3]. [c.43]


Смотреть страницы где упоминается термин Золото т электронное строение: [c.70]    [c.265]    [c.161]    [c.19]    [c.62]    [c.251]    [c.68]    [c.216]    [c.68]    [c.794]    [c.160]   
Основы общей химии Том 2 Издание 3 (1973) -- [ c.227 , c.248 ]




ПОИСК





Смотрите так же термины и статьи:

Электронное строение

электронами электронное строение



© 2025 chem21.info Реклама на сайте