Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Иридий в природе

    Интенсивные окраски появляются при взаимодействии хлорида олова (II) со всеми металлами платиновой группы. На этом основаны методики количественного определения палладия, родия и иридия. Природа окрашенных соединений олова с платиновыми металлами начала систематически изучаться лишь в 50-х годах XX в. В настоящее время установлено, что предельными формами биметаллических комплексов платиновых металлов с оловом (II) на хлоридном фоне являются следующие  [c.420]

    ПЛАТИНОВЫЕ МЕТАЛЛЫ — груп па сходных между собой по физическим и химическим свойствам металлов рутений Ru, родий Rh, палладий Pd, осмий Os, иридий Ir, платина Pt. В природе встречаются вместе с платиной. Все П. м. стойки к химическим реагентам, образуют многочисленные комплексные соединения. [c.193]


    Метод кривых заряжения был распространен на другие металлы платиновой группы (палладий, родий, иридий, рутений и осмий), а также на сплавы платиновых металлов между собой и с другими металлами. Ход кривых заряжения зависит от природы электрода. Так, на иридии и родии и в особенности на рутении и осмии адсорбция кислорода начинается при более низких потенциалах, чем на платине, в результате чего происходит сильное перекрывание областей адсорбции водорода и кислорода. Кривые заряжения палладиевого электрода характеризуются наличием горизонтального участка, соответствующего переходу от твердого раствора водорода в палладии с большим содержанием водорода (Р-фаза) к твердому раствору с малым содержанием водорода (а-фаза). [c.71]

    В двойнослойной области основная часть подводимого электричества затрачивается на изменение заряда двойного электрического слоя. Измерения изоэлектрических сдвигов потенциала (см. 3.1) однозначно доказывают, что в сернокислых растворах в двойнослойной области потенциалов происходит постепенное уменьшение количества адсорбированного водо-лО. рода и возрастание количества адсорбированного кислорода, т. е. перекрывание областей адсорбции водорода и кислорода. Степень этого перекрывания зависит от pH раствора и концентрации ионов 50 " и уменьшается с уменьшением pH и с ростом концентрации 80 . В целом, однако, количество адсорбированных водорода и кислорода в сернокислых растворах на платине в двойнослойной области невелико. Степень перекрывания областей адсорбции водорода и кислорода зависит также от природы металла. Так, она наименьшая в сернокислых растворах на палладии и возрастает при переходе к платине, иридию, родию, рутению и осмию. [c.188]

    Нахождение в природе. Наиболее распространен в природе кобальт. Родий и иридий встречаются в природе в чрезвычайно малых количествах. Кобальт находится в природе в виде соединений, родий и иридий как благородные металлы — в чистом виде и в сплавах с другими металлами. [c.368]

    Соединения с кислородом. Элементы данной подгруппы дают с кислородом соединения типа МеО, и В природе кислородные соединения кобальта, родия и иридия не встречаются. [c.371]

    Гидроксиды. Гидроксиды кобальта, родия и иридия в природе не встречаются. Гидроксид кобальта (П) Со (ОН) — вещество бледно-красного цвета кобальта (П1) Со (ОН)з — черно-бурого цвета родия (П1) Rh (ОН)з и иридия (HI) 1г (ОН)з осаждаются в виде лимонно-желтого и зеленого осадков у иридия известен сине-черный гидроксид 1г (ОН)4. [c.372]

    Еще большее влияние на течение процессов электролиза оказывает природа вещества анодов. Различают растворимые и нерастворимые аноды. Нерастворимые аноды изготовляются из угля, графита, платины и иридия. Растворимые аноды изготовляются из металлов меди, серебра, цинка, никеля и др. [c.200]

    Серебристо-белый металл семейства платины очень твердый, хрупкий, весьма тугоплавкий, высококипящий. В особых условиях получен коллоидный иридий. Благородный металл не реагирует с водой, кислотами, царской водкой , щелочами, гидратом аммиака. Катион 1г " в растворе окрашен в желтый цвет. Переводится в раствор концентрированной хлороводородной кислотой в присутствии О2. Реагирует с сильными окислителями (при сплавлении), кислородом, галогенами, серой. Встречается в природе в самородном виде (сплавы с осмием и платиной). Получение см. 895 , 897 , 899 , 900 , 901 .  [c.450]

    Известные органические реагенты, предложенные для определения иридия, содержат в своей структуре различные по строению и природе атомов функционально-аналитические группы (ФАГ)  [c.35]

    Атомная масса элемента № 77 равна 192,2. В таблице Менделеева он находится между осмием и платиной. И в природе он встречается главным образом в виде осмистого иридия — частого спутника самородной платины. Самородного иридия в природе нет. [c.209]


    Мы исследовали каталитические свойства иридиевых катализаторов на окиси алюминия в реакции жидкофазного гидрирования органических соединений с различными типами непредельной связи. Прослежено влияние количества металла в активной фазе (1—5 вес. "/о 1г) и природы применяемого растворителя на активность иридиевых катализаторов. В настоящем сообщении приводятся экспериментальные данные по гидрированию непредельных соединений на 2 % -ном иридиевом катализаторе в среде 96%-ного этанола при температурах 20, 30, 40°. Иридий наносили на окись алюминия марки А-1 из водного раствора хлориридата аммония методом адсорбции [12]. Перед опытами катализатор был восстановлен в токе водорода при температуре 300° в течение одного часа. Гидрирование проводили на лабораторной установке для каталитического гидрирования с контролем потенциала катализатора [13]. Навеску гидрируемого вещества брали в расчете на поглощение 100 мл водорода (НТД). Восстановление нитросоединений проводили на 0,2 г катализатора, при гидрировании остальных соединений навеска катализатора была 0,5 г. Объем растворителя во всех случаях составлял 30 мл. [c.367]

    Основные научные работы посвящены химии комплексных соединений платиновых металлов, разработке методов их анализа и аффинажа. Выполнил (1915) исследование гидроксиламиновых соединений двухвалентной платины. Изучал комплексные нитросоединения двухвалентной платины, на примере которых открыл ( 926) закономерность транс-влияния, носящую его имя. Суть ее заключается в том, что реакционная способность заместителя во внутренней сфере комплексного соединения зависит от природы заместителя, находящегося по отношению к первому заместителю в граяс-положе-НИИ. В дальнейшем эта закономерность оказалась приложимой к ряду соединений четырехвалентной платины, палладия, радия, иридия и кобальта. Открыл явление перемены знака вращения плоскости поляризации оптически активными аминосоединениями платины (IV) при превращении их в амидо(ими-до) производные. Предложил промышленные методы получения платины, осмия и рутения. [c.557]

    Шесть платиновых металлов — осмий, рутений, платина, палладий, родий и иридий — встречаются в природе главным образом в металлическом состоянии в виде многочисленных сплавов, содержащих обычно большинство (если не все) из этих шести металлов совместно с золотом, а также железом, медью и некоторыми другими неблагородными металлами, например никелем и кобальтом. Эти сплавы обычно ассоциируются друг с другом и нередко с самородным золотом. Наиболее часто встречаются сплавы, в которых преобладает платина. В следующих по распространенности сплавах основными компонентами являются осмий и иридий, так называемые осмистый иридий и иридистый осмий. Наиболее редко встречается рутений, содержащийся главным образом в сплавах иридия и осмия. Осмистый иридий и иридистый осмий, как правило, находятся совместно с платиновыми сплавами, но иногда встречаются и самостоятельно. Встречаются также более или менее чистый самородный иридий, сплав его с платиной и относительно чистый палладий. Известен самородный сплав золота с палладием, называемый п о р-п е 3 и т о м. Найдены также сплавы золота с родием и палладия с ртутью ( п о т а р и т). [c.395]

    Многие колориметрические методы количественного определения иридия основаны на использовании окислительно-восста-новительных реакций. В подавляющем большинстве случаев, химизм реакций и природа окрашенных продуктов реакции не установлены. [c.174]

    Распространение и добыча. Благородные металлы встречаются в природе в самородном состоянии, например платина (содержание в земной коре 5-10 %) ей обычно сопутствуют все другие платиновые металлы — иридий, осмий, палладии, родий, рутений. Содержание серебра в земной коре 10 %, оно встречается как в самородном состоянии, так и в виде руд, содержащих сульфггдные минералы, например АддЗ — серебряный блеск и др. Золото (содержание в земной коре 5-10 %) находится в природе преимущественно в самородном виде. [c.327]

    Нахождение в природе. Рутений является спутником платиновых металлов. Он был открыт в 1844 г. казанским химиком Клаусом и назван в честь России (Яи1Ьеп1а — Россия). В осмистом иридии его содержание составляет около 6%, в самородной платине — доли процента, в сульфиде платиновых металлов лаурите — до 12%. Наиболее распространен осмистый иридий. В СССР он встречается на Урале, в Восточной Сибири и в некоторых других местах совместно с медноникелевыми залежами. [c.364]

    Нахождение в природе. Осмий, как и рутений, является спутником платиновых металлов, в которых он содержится в виде сплава с иридием, так называемого осмистого иридия. Состав осмистого иридия колеблется от IrOsj до IrOs4- [c.365]

    Из металлов только золото, платина, осмий, иридий, ниобий, тантал и вольфрам устойчивы к действию азотной кислоты. Некоторые металлы (например. Ре, А1, Сг) пассивируются концентрированной азотной кислотой. Окислительными свойствами обладают и водные растворы азотной кислоты. Обычно процесс восстановления HNOз протекает в нескольких параллельных направлениях и в результате получается смесь различных продуктов восстановления. Природа этих продуктов, их относительное содержание в смеси зависят от силы восстановителя, концентрации азотной кислоты и температуры. Рис. 48 иллюстрирует относительное содержание продуктов восстановления азотной кислоты железом в зависимости от ее концентрации. [c.263]

    Есть очень. много комплексных галогенидов платиновых металлов с координационным числом 4 (при степени окисления +2) и 6 (при степени окисления +3 и выше) K2Pt l4, К2Р1С1б, [Р1(> Нз)б]Си и др. Самородная платина обычно встречается в природе с примесью других платиновых металлов. Из таких спланов делают химическую посуду, проволоку, сетки и т. д. Платина хорошо впаивается в стекло, тугоплавка, мало испаряется в вакууме, хорошо прокатывается и протягивается в проволоку, устойчива в химическом отношении. Все это послужило тому, что она нашла широкое применение в электровакуумной промышленности в начальном этапе ее развития. Но из-за дороговизны и дефицитности теперь она заменяется другими материалами. Широко используется как катализатор в химических реакциях, для изготовления термопар Р1—Р с 10% РЬ, с помощью которых измеряют температуру до 1500° С только в окнслитель 10й среде. В атмосфере водорода места контакта таких термопар разрушаются. Из сплава платины с 10% иридия изготовляют. эталоны длины и массы. Платину применяют в обмотках электрических печей, в ювелирном деле, в зубоврачебной технике, для анодов в электролитических ваннах. [c.441]

    ИРИДИЙ (Iridium) Ir, химический элем. VIII гр. периодич. сист., ат. н. 77, ат. м. 192.22 относится к платиновым металлам. В природе 2 стао. изотопа 1г и 1г. Открыт С. Теннантом в 1804. Содержание в земной коре 1-10" % по массе. Минералы из группы осмистого иридия (см. Осмий)] входит как изоморфная примесь в кристаллич. решетку минералов медно-никелевых сульфидных руд. Серебристо-белый металл кристаллич. решетка кубическая гранецентрированная плотн. 22,65 г/см t 2447 °С, Гкип ок. 4380 °С Ср 25,1 Дж/(моль-К), Д Нпл 26,0 кДж/моль, [c.228]

    ПЛАТИНОВЫЕ МЕТАЛЛЫ (платиноиды), семейство из 6 элем. УП1 периода периодич. сист. рутений (ат. н. 44), родий (45), палладий (46), осмий (76), иридий (77), платина (78). Вместе с Ag и Аи составляют группу благородных металлов. Подразделяются на легкие и тяжелые (начиная с 0 >). Содержание в земной коре ок. 5-10 % по массе в природе встречается в самородном виде и как примеси к Ag, Аи, сульфидным минералам Ге, N1, Со и Си. Обладают близкими физ. и хим. св-вами. По мере увеличения заряда ядра происходит заполнение 4 -или 5 -орбиталей при наличии одного или двух электронов на 5 - или 65-орбиталях. У Р(1 5. -ор6италь свободна, 1г имеет б -электроны. Наиб, схожи св-ва пар Ки — Оз, КЬ — 1г и Рс1 — Р1. [c.448]


    РОДИЙ (Rhodium) Rh, химический элем. VHI гр. периодич. сист., ат. н. 45, атм. м. 102,9055 относится к платиновым металлам. В природе 1 стаб. изотоп Rh. Открыт У. Волластоном в 1804. Содержание в земной коре 1 -10 % по массе. Входит как изоморфная примесь в кристаллич. решетки минералов медно-никелевых сульфидных руд, минералов группы осмистого иридия (см. Осмий), самородной Pt. Серебристо-белый блестящий металл кристаллич. решетка кубическая гранецентрированная плотн. 12,41 г/см пл 1963 "С, IKBn ок. 3700 °С Ср 25,0 Дж/(моль-К) ДЯ л [c.510]

    Платиновая чернь — тонкий порошок платины, который получают восстановлением ее соединений. Применяют как катализатор в химических процессах. Ллатииовые металлы — рутений (Ru), родий (Rh), палладий (Pd) — легкие платиновые металлы осмий (Os), иридий (Ir), платина (Pt) — тяжелые платиновые металлы. В природе встречаются вместе с платиной. Все эти элементы стойки к химическим реагентам. [c.102]

    Светло-голубой с серым оттенком металл семейства платины самый тяжелый из металлов, очень твердый, хрупкий (растирается в порошок), тугоплавкий, высококипящий. Благородный металл не реагирует с водой, разбавленными кислотами, щелочами, гидратом аммиака. На воздухе легко окисляется до максимальной степени окисления (+VIII). Простых катионов в растворе не образует. Реагирует с коииентрированными серной И азотной кислотами, сильными окислителями, галогенами, серой. Поглощает заметное количество Hj. в природе встречается в самородном виде (сплавы с золотом, иридием, платиной). Получение см. 890 , 891 892 893.  [c.448]

    Платина — элемент редкий и в природе находится в рассеянном состоянии. Самородная платина обычно представляет собой естественный сплав с другими благородными (палладий, иридий, родий, рутений, осмий) и неблагородными (железо, медь, никель, свинец, кремний) металлами. Такая платина (ее называют сырой или шлиховой) встречается в россыпях в виде тяжелых зерен размером от 0,1 до 5 мм. Содержание элементной платины в этом природном сплаве колеблется от 65 до 90%. Самые богатые уральские россыпи содержали по нескольку десятков граммов сырой платины иа тонну породы. Такие россыии очень редки, как, кстати и крупные самородки. Сырую платину, подобно золоту, добывают из россыпей промыванием размельченной породы на драгах. [c.221]

    Иридий 1г (см. также табл. 43) обнаружен в 1804 г. (Теипаит, Англия). В природе встречается в платиновых рудах в составе сплава осмирида Дсм. выше). Представляет собой серебристо-белын, очень твердый, хрупкий [c.438]

    Как можно предположить, это, по-видимому, связано с сильной адсорбцией олефинов на платине и с более слабой адсорбцией их на палладии. На основании этого следует провести параллель между больщой вероятностью десорбции олефина и его, следовательно, сравнительно слабой адсорбцией на рутении, осмии и родии, с одной стороны, и неустойчивостью этиленовых комплексов этих металлов — с другой. Рассуждая аналогичным образом, можно прийти к выводу, что комплексы иридия с олефинами должны быть устойчивы, подобно комплексам платины. К сожалению, в данном случае уже нельзя провести сравнение между этими металлами. Такая зависимость наводит на мысль, что природа связи при адсорбции олефина и в комплексах металла солефином— одна и та же, т. е. это я-связь. Согласно имеющимся данным, металлы, образующие комплексы с этиленом, будут также давать комплексы с другими олефинами, и наоборот в катализе, как показано в настоящем параграфе это соответствует тому, что степень изомеризации и обмена в олефине всегда является характеристикой данного металла и практически не зависит от молекулярного веса олефина. [c.459]

    Иное объяснение дается толерантности к закоксовы-ванию алюмоплатиноиридиевых катализаторов [244]. В этом случае часть поверхностных атомов платины разбавлена менее активным иридием. Значения каж реакции дегидрирования циклогексана близки для обоих контактов, что показывает вероятность одинаг овой природы активных центров и механизма реакции. Более низкое значение предэкспоненциального множителя для платиноиридиевого катализатора предполагает меньщее число активных центров, что согласуется с эффектом разбавления (геометрический фактор). Так как поверхность платиноиридиевого контакта обладает более низкой дегидрирующей активностью, концентрация коксовых отложений из олефинов будет ниже, что ведет к меньщей скорости отравления и более стабильной работе катализатора. [c.94]

    Платина, палладий, родий, иридий, рутений и золото в рас творах соляной или бромистоводородной кислот в присутствии ЗпСЬ или ЗпВгг образуют окрашенные соединения, которые используются для колориметрического определения этих эле-.ментов, так как реакция весьма чувствительна. Окраска растворов золота обусловлена образованием коллоидных растворов металлического золота. Природа окрашенных соединений платиновых металлов оставалась неизвестной. В последние годы было установлено, что металл в этих соединениях входит в состав комплексных анионов, в которых отношение олова (II) к [c.58]


Смотреть страницы где упоминается термин Иридий в природе: [c.183]    [c.65]    [c.65]    [c.233]    [c.372]    [c.354]    [c.65]    [c.570]    [c.95]    [c.355]    [c.502]    [c.228]    [c.418]    [c.510]    [c.241]    [c.508]    [c.124]    [c.194]   
Основы общей химии Том 2 Издание 3 (1973) -- [ c.377 ]




ПОИСК





Смотрите так же термины и статьи:

Иридий

Иридий-191 и иридий



© 2025 chem21.info Реклама на сайте