Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кислород энергетические уровни

    Элементы главной подгруппы VI группы — кислород, сера, селен, теллур и полоний - называются халькогенами. Наружный энергетический уровень имеет конфигурацию ns np . Кислород в соединениях может проявлять только степень окисления —2 (кроме OF2), а остальные эле- [c.192]

    Энергия ионизации молекул. В прямой зависимости от характера распределения электронов по связывающим и разрыхляющим молекулярным орбиталям находится также значение энергии ионизации молекул. Как мы видели, в двухатомной молекуле связывающие электроны лежат глубже, чем в атоме, а разрыхляющие — наоборот. Таким образом, энергия ионизации молекулы, верхний занятый энергетический уровень которой является связывающим, выше, чем таковая свободного атома. Например, энергия ионизации молекулы N2 (15,58 эВ) больше энергии ионизации атома азота (14,53 эВ). Если же верхний занятый уровень молекулы является разрыхляющим, то энергия ионизации молекулы меньше, чем атома. Так, энергия ионизации молекулы О 2 (12,08 эВ) меньше энергии ионизации атома кислорода (13,62 эВ). [c.56]


    По электронному строению молекула S2 подобна молекуле О2. Магнитные свойства последней указывают на наличие в ней двух неспаренных электронов. При четном числе внешних электронов в атоме кислорода (6) это возможно лишь для связи простой ( O—O ) или тройной ( O=O ). Так как длина простой связи О—О составляет около 1,50 А, а в молекуле О2 она равна 1,21 А, связь должна быть тройной. Возникновение структуры 0=0 связано с затратой энергии для перевода неспаренных электронов на более высокий энергетический уровень (3s) и преодоления их взаимного отталкивания (из-за параллельности спинов). Однако такая затрата перекрывается энергией образования тройной связи. Как следует из спектральных данных, переход от приведенной выше к обычно принимаемой для молекулы кислорода электронной структуре 0=0 требует затраты 22 ккал/моль. Эта структура является, следовательно, не основной для молекулы кислорода, а возбужденной (с энергией диссоциации 97 ккал/моль). [c.322]

    В кислой форме и-нитрофенола на атоме кислорода уже нет отрицательного заряда. Неподеленные электронные пары кислорода гораздо труднее вовлекаются в делокализацию поэтому энергетический уровень первого возбужденного электронного состояния оказывается выше, чем у основной формы. Поглощение света имеет максимум при 320 нм, который приходится на начало ультрафиолетовой области, и вследствие этого соединение имеет бледную желто-зеленую окраску. Фенолфталеин, бесцветный в кислой среде и розовый в основной среде, имеет более сложную молекулу, которая в зависимости от кислотности среды изменяется подобным же образом. [c.307]

    Несмотря на наличие двух неспаренных электронов, кратность связи в молекуле кислорода равна двум, так как на его связывающих орбиталях находится восемь, а на разрыхляющих — всего четыре электрона внешнего электронного слоя. Спаривание электронов, т. е. попадание двух электронов на одну орбиталь, отнюдь не является причиной образования связи — оно лишь следствие стремления электронов занять максимальное число мест на связывающих орбиталях. В случае молекул О2 и Са в соответствии с правилом Хунда наличие двух неспаренных электронов на двух эквивалентных орбиталях энергетически более выгодно, чем наличие двух спаренных электронов на одной из этих орбиталей. Так как самый высокий по энергии заполненный энергетический уровень в О г соответствует разрыхляющей орбитали, то удаление одного электрона приводит к увеличению кратности связи, она становится равной 2,5. Связь в ионе несколько прочнее, чем в молекуле О 2. Наоборот, связь в ионе О2 слабее, чем в О2, так как при образовании такой частицы еще один электрон вынужден занять разрыхляющую орбиталь 2ру,г- [c.64]

    Несмотря на наличие двух неспаренных электронов, кратность связи в молекуле кислорода равна двум, так как на его связывающих орбиталях находится восемь, а на разрыхляющих — всего четыре электрона внешнего электронного слоя. Спаривание электронов, т. е. попадание двух электронов на одну орбиталь, отнюдь не является причиной образования связи — оно лишь следствие того, что электроны занимают максимальное число мест на связывающих орбиталях. В случае молекул О2 и С2 в соответствии с правилом Хунда наличие двух неспаренных электронов на двух эквивалентных орбиталях соответствует более низкой энергии, чем при наличии двух спаренных электронов на одной из этих орбиталей (т. е. такое состояние энергетически более выгодно). Так как самый высокий по энергии заполненный энергетический уровень в молекуле [c.71]

    Следует подчеркнуть, что последовательность расположения переносчиков такова, что значения потенциала ставновятся все более положительными. Каждый предыдущий, более восстановленный переносчик, находится в более высокоэнергетическом состоянии, чем каждый последующий. Другими словами, электроны переходят на все более низкий энергетический уровень. Компоненты дыхательной цепи расположены во внутренней митохондриальной мембране в виде высокоупорядоченных надмолекулярных ансамблей. Показано, что перенос электронов от НАДН к ФМН (1-й участок), от цит.Ь к ЦИТ.С) (2-й участок) и от цит. а, к О2 (3-й участок) сопряжены с фосфорилированием АДФ, т.е. происходит образование АТФ. Данные три участка называют участками окислительного фосфорилирования. Выяснено, что перенос пары электронов от НАДН к О2 сопровождается синтезом трех молекул АТФ. Это было показано отношением Р/О, т.е. числом молей Р, превращаемых на 1 грамм-атом израсходованного кислорода. [c.86]


    В большинстве соединений кислород как сильно электроотрицательный элемент обладает степенью окисления (—П), он оттягивает иа себя обе общие пары электронов и, следовательно, приобретает на свой внешний энергетический уровень два лишних электрона"(а всего 8е вместо 6е в нейтральном атоме). Однако в ОР] степень окисления кислорода иная, а именно, равна (+П). В простых веществах (На, Рз, N2) данный элемент имеет степень окисления, равную нулю. [c.158]

    Поглощение обусловлено переходом неспаренных электронов атома кислорода на более высокий энергетический уровень (у ацетона Ямакс= 187 и 280 нм). [c.256]

    Энергетический уровень озона лежит сразу над уровнем двухатомных молекул. В связи с этим становится до известной степени понятным и тот факт, что озон окисляет различные вещества легче, чем обычный кислород. В значительной мере реакционная способность озона зависит также от того, что энергии активации его реакций обычно невелики. [c.73]

    Ультрафиолетовый спектр ацетона приведен на рис. 2-9 . Слабое поглощение с пиком (т. е. с при 2800 А является результатом перехода одного из неподеленных электронов кислорода на более высокий энергетический уровень. Он называется переходом (часто УУ- Л), где п означает, что возбуждаемый электрон является одним из неподеленных п-электронов кислорода, и л  [c.54]

    Почему цепная реакция окисления сульфита кислородом индуцирует окисление арсенита Очевидно, арсенит-ион, получая удар от какой-нибудь частицы в ходе цепной реакции сульфид — кислород, становится активным и в таком виде легко окисляется. Цепной процесс повышает энергетический уровень арсенит-понов. [c.193]

    Здесь возрастание числа неспаренных электронов возможно только путем перевода одного из электронов на следующий энергетический уровень, т. е. в состояние 3 . Однако такой переход сопряжен с очень большой затратой энергии, которая не покрывается энергией, выделяющейся при возникновении новых связей. Поэтому за счет неспаренных электронов атом кислорода может образовать не больше двух ковалентных связей, а атом фтора — только одну. Действительно, для этих элементов характерна постоянная ковалентность, равная двум для кислорода и единице — для фтора. [c.125]

    Сродство молекулы кислорода к электрону равно —1 эв, а энергия адсорбции равна 1 -i- 1,5 эе. В спектрах ЭПР облученного цеолита NaY и силикагелей с большой поверхностью S = 600 м г) после адсорбции кислорода наблюдается сигнал от ионов Oi, следовательно, в этих сорбентах энергетический уровень электронов в ловушках расположен ниже дна зоны проводимости на 1,5—2 эв. В щелочных и щелочноземельных катионных формах цеолитов типа А этот эффект не наблюдается, т. е. уровни электронов в ловушках этих цеолитов, а также в ловушках силикагелей с малой поверхностью расположены ниже, чем в NaY. [c.418]

    Все 2р-орбитали оказываются занятыми одиночными электронами уже в атоме азота, поэтому в кислороде восьмой электрон помещается на занятую одиночным электроном 2р-орбиталь, образуя пару электронов с противоположными спинами. Седьмой электрон фтора помещается на вторую 2р-орбиталь, восьмой электрон неона— на третью 2р-орбиталь. В атоме неона вое 2р-орбитали насыщены, поэтому одиннадцатый электрон атома натрия начинает застраивать третий энергетический уровень и помещается на 35-орбиталь. Двенадцатый электрон магния поступает на 35-орбиталь, образуя пару электронов с противоположными спинами. Тринадцатый электрон алюминия поступает на первую свободную Зр-орби-таль и т. д. [c.44]

    Молекулы органических соединений могут содержать гетероатомы с неподеленными (не участвующими в связях) -электронами (атомы азота, кислорода, серы, галогенов и др.). Неподеленные электроны этих атомов возбуждаются квантами энергии фотонов ультрафиолетовой части спектра и переходят па более высокий энергетический уровень. Само по себе это возбуждение не представляет интереса для цветности органических соединений. Однако заместители, обладающие неподеленными парами электронов, оказывают на молекулу с сопряженными двойными связями поляризующее действие, вызывая постоянное, не зависящее от действия света, смещение я-электронов. [c.29]

    Напротив, при растворении в кристалле MgO металлической примеси с одним валентным электроном, например Li, его валентный электрон заполняет только один энергетический уровень в валентной зоне кислорода, а второй остается свободным. Если в кристалле отсутствуют какие-либо дополнительные атомные дефекты, которые могли бы привести к заполнению незанятого уровня, последний на общем фоне представляет собой электронную дырку в валентной зоне. Ион же лития, отдавший в валентную зону кислорода один электрон, находится в виде однократно заряженного положительного иона и на фоне двукратно заряженных ионов магния проявляет себя как дефект замещения Li Mg с отрицательным эффективным зарядом. [c.36]

    Электронновозбужденные реагенты и продукты в основных состояниях, в процессах этого типа легче интерпретировать дальнейшие реакции продуктов. 1Иы рассмотрим лишь несколько реакций, в которых проявляются некоторые особенности атомов кислорода. Энергетический уровень состояния О D) расположен на 45 ккал1моль выше уровня основного триплетного состояния. Атомы 0( /)) должны реагировать [57, Ь] с этиленом, образуя колебательно-возбужденный продукт, находящийся в основном электронном состоянии, поскольку избыток энергии реакции (-—129 ккал1молъ) заметно меньше разности уровней основного и первого возбужденного синглетного состояния окиси этилена (167 ккал1молъ) [61]. Последующие реакции окиси этилена можно рассматривать поэтому как адиабатические процессы. [c.75]

    Сущность каталитического действия Н+ в рассмотренных реакциях заключается в том, что электрофильный реагент Н+ имеет свободную (незанятую) орбиталь и избыточный положительный заряд. Свободный энергетический уровень Н+ может взаимодействовать с энергетическими уровнями несвязывающих орбиталей, а также с верхними заполненными молекулярными орбиталями кислорода. На свободную орбиталь Н+ смещается электронный заряд с несвязывающей или верхней заполненной орбитали кислорода. В результате возникает связь донорно-акцепторного типа между протоном и атомами кислорода. Распределение электронной плотности в молекуле изменяется. За счет понижения электронной плотности на связях — прочность их понижается, молекула поляризуется. [c.625]

    Работа галиевого детектора основывается на эффекте Пеннинга. В камере находится источник р-излучения. Электроны атома гелия (газа-носителя) в результате столкновения с р-частицами переходят на более высокий энергетический уровень. Энергия возбуждения больше энергии ионизации молекул примеси, поэтому при столкновении возбуждаемых атомов гелия с этими молекулами происходит их ионизация. Величина ионизационного тока характеризует количество примесей. Важной особенностью гелиевого детектора, является то, что он позволяет определять такие примеси постоянных газов, как азот, кислород, водород и т. п. Чувствительность гелиевого детектора достигает объемной концентрации 10" %. [c.402]

    Согласно этой теории, окисление тех соединений, которых структура и наличие определенных функциональных групп делает способными к окислению их свободным кислородом, протекает через стадию промежуточного образования нестойких и очень реакционноспособных перекисей с активным кислородом. Такие перекиси для соединения А будем обозначать Л [Оа]. По Муре и Дюфрессу, такая первая ступень соединения А с молекулой кисло-рода образуется без потери энергии или падения потенциала, но часто с повышением потенциала. Обладая различными уровнями энергии, не все молекулы Л и О2 участвуют в образовании такой первичной перекиси, но только те немногие из них, которых энергетический уровень выше энергии активирования ( omplement ritique d energie). При этом первичная перекись образуется за счет энергии окружающей массы без передачи системе какой-либо внешней энергии. Молекулы первичной перекиси Л [Оа], если они не диссоциируют на составные части, в дальнейшем эволюционируют в направлении стойких форм, где кислород уже не имеет тех свойств, которые отличают первичные перекиси, где он переходит в неактивное состояние. [c.473]


    Однако окислительно-восстановительный потенциал системы вода — молекулярный кислород равен +820 мВ, из чего следует, что электронная вакансия , возникающая, например, в молекуле бактериохлорофилла реакционного центра зеленых серобактерий при нециклическом транспорте электронов, не может быть заполнена электроном воды (фотоокисленная форма бактериохлорофилла реакционного центра зеленых серобактерий — пигмента П84о — имеет окислительно-восстановительный потенциал порядка +250 мВ). Чтобы использование электронов воды стало возможным, необходимо, во-первых, их оторвать от молекулы Н2О, термодинамически очень невыгодного донора электронов, и, во-вторых, поднять на более высокий энергетический уровень, позволяющий включаться в фотосистему, описанную выше. Природа решила эти проблемы путем создания дополнительной пигментной системы, обозначаемой как фотосистема П. [c.287]

    Важно заметить, что электроны в этой реакции передаются от Н2О к НАДФ+, а в дыхательном процессе в митохондриях они передвигаются иначе от НАДН или НАДФ Н к кислороду, т.е. с потерей свободной энергии. Поскольку возникший в результате воздействия солнечного света поток электронов в хлоропластах направлен в фотосистемах вверх от Н2О к НАДФ+ нужна свободная энергия, иначе этот процесс невозможен. Вероятнее всего, эту энергию процесс получает при световом возбуждении молекулы хлорофилла, находящейся в тилакоидной мембране. Один из ее электронов переходит на более высокий энергетический уровень, возбуждается и затем вновь переходит на более низкий уровень (см. ранее), а энергия возбуждения высвобождается и далее участвует в процессе фотосинтеза. [c.197]

    Если реакция вдет на поверхности твердого тела, то электроны твердого тела оказываются вовлеченными в каталитический процесс. При этом знаки заряда поверхности изменяются так, как будто электроны перешли от катализатора к адсорбату или наоборот. Однако понятие "электронный переход" в катализе имеет следующий смысл. Если, на полупроводнике р -тгпа адсорбируется акцепторная молекула (кислород, например), то она образует в запрещенной 8.0Н8 свой локальный энергетический уровень, на котором тона-лизуется электрон (рис.90). Тогда на освободившийся уровень пе реходит электрон из заполненной зоны и увеличивается количество дырок в валентной зоне. Формально это выглядит так, как если бы электрон перешел к 02 0 е - 0 +0. [c.279]

    Тот факт, что кислород и в гомеополярных соединениях никогда не проявляет валец,тности больше двух, с точки зрения теории атомной связи объясняется следуюпщм образом в атоме кислорода имеется шесть внешних электронов, находяш ихся на энергетическом уровне с главным квантовым числом п = 2. Согласно принципу Паули (см. стр. 145 и сл.), на таком уровне может находиться максимум восемь электронов. Так как обычно каждая гомеополярная связь образуется парой электронов, для которой каждый из связанных атомов представляет один электрон, то при образовании двух главных валентностей число внешних электронов атома кислорода доходит до восьми, т. е. до максимально возможного числа. Чтобы образовалось более двух валентных связей, по крайней мере один электрон должен подняться с уровня с главным квантовым числом 2 на уровень с главным квантовым числом 3. Как следует из спектральных термов кислорода, для этого надо затратить очень большую энергию, а именно около 210 ккал г-атом. В атомах аналогов кислорода, наоборот, ни одному электрону не надо подниматься на уровень с большим главным квантовым числом, чтобы стало возможным образование более двух гомеополярных главных валентных связей, так как в силу большего значения главного квантового числа внешние энергетические уровни этих атомов могут содержать больше восьми электронов. Впрочем, и в атомах гомологов кислорода, чтобы они проявили валентность больше двух, электроны должны быть подняты на более высокий энергетический уровень, но не с большим главным [c.737]

    То, что фтор никогда также не обладает в гомеополярных соединениях большей валентностью, чем, единица, объясняется теорией Гейтлера — Лондона, так же как максимальная двухвалентность кислорода следует из принципа Паули. Напротив, аналоги фтора, также как аналоги кислорода, могут проявлять в гомеополярных соединениях более высокие валентности, так как вследствие более высоких главных квантовых чисел их внешних электронов на впепшей оболочке их атомов могут располагаться более чем 8 электронов. Правда, при этом часть внешних электронов должна перейти на энергетический уровень с более высоким орбитальным квантовым числом ( -уровень). Следовательно, соединения, в которых галогены проявляют более высокую валентность, чем единица, производятся не из основного состояния атома, а из возбужденных состояний. Основное состояние атома соответствует у всех галогенов дублетному терму ( Ps/j), т. е. в основном состоянии все электроны, кроме одного, спарены. [c.828]

    Фонер с сотрудниками [12] изучали парамагнитный резонана кислорода в клатратном соединении р-гидрохинона при низких температурах. Помимо подтверждения выводов, полученных из исследований магнитной восприимчивости (см, раздел III, А) относительно высоты энергетического барьера молекулярного враш ения,. их результаты содержали также некоторую информацию о взаимодействии молекул, расположенных в различных полостях. Следует напомнить, что основной энергетический уровень молекулы кислорода в клатратном соединении расщепляется при взаимодействии спина с осью молекулы. Величина этого расщепления (— 4° К) такова, что для получения парамагнитного спектра поглощения необходимо применять относительно мощные поля и высокие частоты. [c.581]

    Между веществами N3 и СО имеется много общего, что является результатом аналогии в построении их молекул. Так, значения энергии диссоциации у них близки (см. таблицу), наблюдается также сходство в некоторых химических свойствах, в структуре спектров. Однако здесь имеются и существенные различия. Так, N3 — молекула гомонуклеарная, электронофильность слагающих ее атомов N и N одинакова, а СО — молекула гетеронуклеарная. Электронофильность атомов С и О различна. Так, энергия ионизации у атома С составляет П,26, а у атома О 13,61 эВ. Это связано с тем, что внешний энергетический уровень у атома О значительно ближе к завершению, чем у атома С, электронная конфигурация 2р , заключающаяся в оболочке атома кислорода, прочнее, чем конфигурация 2р у атома углерода. В связи с этим 25- и 2р-орбитали атома О расположены на более низком энергетическом уровне, чем аналогичные орбитали атома С. Это и отображено на рисунке 5-26. [c.117]

    Наименьшая энергия, которой может обладать поглощаемый формальдегидом свет, соответствует переходу 1 на рис. 23.4. При этом происходит перенос электрона с несвязывающей р-орбитали кислорода на свободную разрыхляющую я-орбиталь связи кислород — углерод. Этот переход называют п)-переходом. Он происходит при 2700 А и обладает небольшой интенсивностью из-за различной симметрии участвующих в нем орбиталей. Остальные переходы, наблюдаемые в ультрафиолетовом спектре поглощения формальдегида, также понятны из рассмотрения рис. 23.4 о-<—п, Яа—ль и а- —.яь. (Первым записывают высший энергетический уровень, а стрелкой обозначают направление перехода.) [c.245]

    Самым замечательным свойством АТФ является то, что фосфорные кислоты в ней соединяются друг с другом связями, характеризующимися значительно большими запасами энергии, чем обычная, например эфирная связь, когда фосфорная кислота соединена с углеродом через кислород. Эти связи носят название макро-эргических и обозначаются значком —. В АТФ имеются две макроэргические связи. При взаимодействии АТФ с аминокислотой от нее отщепляется так называемый пирофосфат, т. е. короткая цепочка из двух молекул фосфорной кислоты, а остаток АТФ через фосфатную группу соединяется с карбоксильной группой аминокислоты. При таком соединении весь запас энергии, который находился в связи между первой и второй фосфатной группами, переходит на аминокислоту и последняя становится более активной и реакционноспособной, переходит, как говорят, на более высокий энергетический уровень. В этом взаимодействии АТФ [c.80]

    Первое возбужденное состояние, которое связано с поглощением приблизительно при 290 ммк, имеет электронную конфигурацию о2я2у я 25 . Один из электронов неподеленной пары, находящихся на несвязывающей ру-орбите атома кислорода, переходит на более высокий энергетический уровень — разрыхляющую я -орбиту, которая принадлежит одновременно атомам углерода и кислорода карбонильного хромофора следовательно, этот электрон в первом возбужденном состоянии занимает больший объем в молекуле, чем тот объем, который он занимал на ру-орбите атома кислорода. Напомним, что орбиты я и я соответствуют двум молекулярным орбитам, которые получаются путем линейной комбинации орбит р С и РхО. я-Орбита является связывающей, ее энергия меньше энергии я -орбнты. [c.110]

    Преднаружный энергетический уровень атома кислорода в отличие от остальных элементов группы содержит всего два электрона. Такая особенность в строении атома кислорода, несомненно, обусловливает некоторые особенности в его свойствах. Распределение электронов наружного уровня в атомах халькогенов представлено схемой [c.102]

    Преднаружный энергетический уровень атома кислорода в отличие от остальных элементов группы содержит всего два электрона. Такая особенность в строении атома кислорода, несомненно, [c.134]

    Нарушение последовательности заполнения электронных оболочек связано с тем, что энергетический уровень, определяемый более высоким главцым квантовым числом, но меньшим орбитальным, оказывается более выгодным, чем предыдущий незаполненный уровень. Наличие у всех трех элементов незаполненных орбит во многом предопределяет их химическое поведение помимо связей с участием валентных 5- и -электронов, они способны образовывать донорно-акцепторные связи. Такая способность, наиболее ярко выраженная у титана, проявляется в соединениях с рядом элементов, в том числе с кислородом, который может быть донором двух неподеленных пар электронов. Этим объясняется образование радикалов титанила, цирконила и гафнила, а также различных продуктов присоединения и полиядерных комплексов, в которых титан имеет координационное число до 6, а цирконий и гафний — до 8. [c.179]

    Заряд ионов железа может изменяться ион Fe +, теряя электрон, переходит в ион Ре +, а ион Р +, получая электрон, снова превращается в ион Ре2+. Таким образом эти ионы могут переносить электроны. Однако в действительности поток электронов по цитрохромам течет лишь в одном направлении от донора электронов к их акцептору — кислороду. Это происходит потому, что энергетический уровень электрона в исходном веществе выше, чем в конечном (в воде), и движение электрона по цепи цито-хрсмов сопровождается выделением энергии. [c.91]


Смотреть страницы где упоминается термин Кислород энергетические уровни: [c.579]    [c.20]    [c.296]    [c.660]    [c.486]    [c.316]   
Основы общей химии Том 2 Издание 3 (1973) -- [ c.354 ]




ПОИСК





Смотрите так же термины и статьи:

Уровни энергетические



© 2025 chem21.info Реклама на сайте