Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Коллоиды коалесценция

    Кроме защитных коллоидов, коалесценция пузырьков воздуха предотвращается наличием твердых частиц. В этом случае стабилизирующее действие зависит от степени дисперсности, природы вещества и его концентрации. [c.34]

    Более детальное обсуждение первых двух факторов приведено в главе IV. Здесь же мы остановимся на действии третьего фактора-— механической прочности стабилизирующей пленки, препятствующей уменьшению ее толщины и коалесценции капель. Вязкость в таком слое постепенно нарастает от нормальной вязкости дисперсионной среды до максимальных значений непосредственно вблизи поверхности капель. Такие слои могут быть образованы либа молекулярными коллоидами — высокомолекулярными соединениями типа желатины и каучука, либо полуколлоидами типа мыл. Адсорбируясь в поверхностном слое, эти вещества образуют лИогель, обладающий значительной прочностью. [c.161]


    Выше мы видели, что термодинамическая неустойчивость дисперсных и коллоидных систем выражается в самопроизвольном укрупнении частиц — коагуляции и коалесценции. Однако скорость коагуляции может быть различной. Если система обладает большим избытком свободной энергии на границе раздела фаз, т. е. и поверхностное. натяжение а и площадь S поверхности раздела фаз достаточно велики, то коагуляция идет с большой скоростью. Такие системы называют агрегативно неустойчивыми. Но иногда в колЛоиде с такой же степенью дисперсности коагуляция идет очень медленно, практически незаметно. В таких системах, называемых агрегативно устойчивыми, очевидно, поверхностное натяжение на границе фаз невелико. Отсюда можно сделать вывод о том, что важный фактор получения устойчивых коллоидных систем — уменьшение поверхностной энергии за счет адсорбции поверхностноактивных веществ на коллоидных частицах. [c.55]

    В лиофобных системах структура коагулятов и их прочность в значительной мере определяется степенью сольватации, которая может изменяться в весьма широком диапазоне — от типично лиофобных коллоидов (гидрозоли металлов) до систем, сильно лиофилизированных, особенно в результате адсорбции ПАВ или ВМС. В подобных агрегатах, несмотря на изменение подвижности, частицы еще сохраняются как таковые большее или меньшее время (так называемое время жизни ), после чего могут срастаться (в случае твердой дисперсной фазы) или сливаться (в случае жидкой) самопроизвольно с уменьшением поверхности раздела фаз. Слияние капелек называется коалесценцией. [c.231]

    В ванне для стирки содержание электролита достаточно велико и, следовательно, необходимо позаботиться о том, чтобы защитить удаленные от очищаемой поверхности диспергированные частицы загрязнений от повторной коалесценции. В качестве стабилизаторов молено использовать защитные коллоиды (например, карбоксиметилцеллюлозу) или специфически адсорбирующиеся носители зарядов — ионогенные ПАВ и полифосфаты. [c.133]

    Коагуляция лиофобных коллоидов. Вторичная устойчивость. Фервей [95] совершенно правильно подчеркнул различие между первичной устойчивостью коллоидов, связанной с зарядом поверхности, и вторичной устойчивостью, обусловленной эффективным отталкиванием коллоидных частиц. Первичная устойчивость определяется общим потенциалом твердого вещества, тогда как вторичная устойчивость — в основном электрокинетическим потенциалом. Для существования устойчивого золя необходимым условием является не только наличие первичного заряда на поверхности твердой фазы, но и диффузного двойного слоя достаточно большой толщины по сравнению с толщиной плоскости скольжения. Если большинство противоионов находится на расстоянии меньшем, чем расстояние до плоскости скольжения, тогда две коллоидные частицы при малом отталкивании могут приблизиться друг к другу на расстояние, достаточное для коалесценции их водных оболочек, и тогда происходит коагуляция. [c.181]

    Выше мы видели, что термодинамическая неустойчивость дисперсных и коллоидных систем выражается в самопроизвольном укрупнении частиц — коагуляции или коалесценции. Однако скорость коагуляции может быть различной. Если система обладает большим избытком свободной энергии на границе раздела фаз, т. е. и поверхностное натяжение о и площадь 5 поверхности раздела фаз достаточно велики, то коагуляция идет с большой скоростью. Такие системы называют агрегативно неустойчивыми. Но иногда в коллоиде с такой же степенью дисперсности коагуляция идет очень медленно, практически незаметно. В таких системах, называемых агрегативно устойчивыми, очевидно, поверхностное натяжение на границе фаз невелико. Отсюда можно [c.54]


    Как уже указывалось на стр. 130, нет необходимости в образовании сплошного гидратного монослоя для предупреждения прямого контакта и коалесценции капель действительно, во многих случаях была показана достаточная эффективность прерывного адсорбционного слоя, покрывающего около 40—60% поверхности капель. Образование сплошного адсорбционного слоя не обязательно также и в случае двойного электрического слоя, так как достаточно интенсивное электростатическое отталкивание легко возникает и при частичном покрытии поверхности (в лиофобных коллоидах с ионными адсорбционными слоями ионы никогда не покрывают поверхность частицы сплошным слоем). В целом механизм устойчивости эмульсий аналогичен устойчивости других лиофобных коллоидов с ионными и молекулярными адсорбционными слоями. [c.140]

    Используемые для покрытий дисперсии полимеров представляют собой гетерогенную систему, в которой вода является дисперсионной средой, а тонко раздробленный полимер в виде агрегатов макромолекул — дисперсной фазой. Устойчивость дисперсии создается эмульгатором и поддерживается защитным коллоидом, роль которого чаще всего выполняют природные или синтетические водорастворимые полимеры. Пленкообразование из дисперсий происходит в результате коалесценции частиц полимера после удаления воды. [c.180]

    В экстракционных колоннах капли разного диаметра двигаются с различной скоростью, что, в конечном итоге, приводит к соударениям и слиянию капель. Аналогичное явление имеет место и в мешалках при перемешивании полидисперсных систем. Этот тип коалесценции носит название ортокинетической коагуляции в отличие от коагуляции коллоидов, где соударения частиц происходят благодаря турбулентным пульсациям (турбулентная коагуляция) [80, 95—100]. [c.294]

    На проектируемых и строящихся заводах по производству поливинилхлорида будут использоваться только синтетические эмульгаторы, так как они резко улучшают качество полимера и значительно сокращают время полимеризации. Для полимеризации по суспензионному методу обычно применяются защитные коллоиды, среди которых в промышленных условиях широко распространены натриевая соль сополимера стирола с малеино-вым ангидридом (стиромаль) и метилцеллюлоза [69]. Стиро-маль и метилцеллюлоза, являясь высокомолекулярными соединениями, при растворении в воде образуют высоковязкие растворы, которые предотвращают коалесценцию капель мономера при полимеризации. Кроме того, эти эмульгаторы обладают поверхностно-активными свойствами и снижают поверхностное натяжение на границе капли мономер — вода . Вследствие этого они образуют механически прочные адсорбционные слои на поверхности капель, что также мешает их слиянию. [c.71]

    Простой, гго очень трудоемкий метод изучения ф.токуляции заключается в разбавлении образца эмульсии и подсчете числа частиц в единице объема под микроскопом. При этом смешение должно быть осторожным разбавляющая среда может быть защитным гидрофильным коллоидом (таким как желатин) или неионным детергентом. Кинг и Мукерджи (1939, 1940) использовали этот метод при изучении скорости коалесценции, опи определяли распределение частиц ио размеру для получения межфазной поверхности эмульсий как функции времени. Для облегчения измерения и подсчета капли фиксировали в слабом геле желатина и увеличенное оптическое изображение проектировали на экран. [c.104]

    Лиофобные эмульсии термодинамически неустойчивы и требуют специальной стабилизации. Ее можно достичь тремя путями 1) созданием двойного электрического слоя, что бывает, например, в разбавленных эмульсиях 2) образованием на поверхности частиц дисперсной фазы сольватного слоя, препятствующего коалесценции 3) образованием на поверхности частиц со стороны дисперсионной среды стабилизируюпдей адсорбционной пленки, препятствующей коалесценции механически. Такие пленки могут быть образованы либо молекулярными коллоидами типа высокомолекулярных соединений (желатина, каучук), либо полуколлоидами типа мыл. Эти вещества, адсорбируясь, образуют лиогель, обладающий значительной механической прочностью. Прочность таких пленок зависит от концентрации эмульгатора. Существует оптимум структурно-механических свойств, выше и ниже которого система становится неустойчивой. Наличие такого оптимума прочности связано с подвижностью адсорбционного слоя, необходимой для покрытия случайных разрывов в пленке. В этом типе стабилизирующего действия эмульгатора хотя и [c.79]

    Прямыми измерениями установлено, что механические свойства адсорбционных слоев (их вязкость и упругость) всех реагентов возрастают по мере насыщения адсорбционного слоя, достигая максимума при его полном насыщении. Однако обычно максимум в противодействии реагентов коалесценции наступает до достижения полного насыщения адсорбционного слоя. Для адсорбционных слоев, образованных реагентами, имеющими свойства коллоидов независимо от того, являются ли они водо- или нефтерастворимыми, характерен процесс старения — изменения свойств пленок в сторону приобретения ими большей механической прочности и хрупкости. Такие активные компоненты, как асфальтены, имеют также свойства коллоидов. Наличием их и других компонентов объясняются, в частности, трудности с деэмульса-цией нефти со временем. [c.93]

    Расчету сечения столкновения частиц посвящено довольно много работ, которые можно разделить на три группы в зависимости от степени учета сил взаимодействия частиц. Укажем лищь некоторые из них. Первые работы были выполнены Смолуховским [8] в них построена теория коагуляции коллоидов без учета гидродинамических сил взаимодействия частиц. В большинстве последующих работ рассматривалось движение частиц в маловязкой среде применительно к проблемам коагуляции капель и частиц в атмосфере [9, 10]. Учет гидродинамического взаимодействия двух медленно движущихся сферических частиц в вязкой жидкости на основе приближенных выражений, полученных методом отображений и справедливых, только если частицы находятся относительно далеко друг от друга, был сделан в работах [11 — 13]. В частности, в [И] таким образом определено сечение столкновения для двух сферических частиц разного радиуса, осаждающихся в поле силы тяжести. Результаты этой работы были использованы в [12] для расчета сечения столкновения частиц сравнимых размеров в электрическом поле. Расчет сечения столкновения двух заряженных частиц, когда одна из них значительно меньше другой, сделан авторами работы [14]. Более точный учет гидродинамических сил был осуществлен в [13, 15, 16]. Отметим, что в [15] определено сечение столкновения проводящих капель различного размера во внешнем электрическом поле, а в [16] — и с учетом заряженных капель. В последних двух работах учитывались как гидродинамические, так и электрические силы, полученные при точном решении соответствующих гидродинамических и электростатических задач. Во всех указанных работах рассматривалось взаимодействие частиц без учета внутренней вязкости. В работе [17] определено сечение столкновения двух сферических капель, внутренняя вязкость которых отлична от вязкости окружающей жидкости. Там же учтена также сила молекулярного взаимодействия капель, обеспечивающая возможность их коалесценции. [c.255]


    Состояние дисперсионных коллоидов характеризуется избытком свободной энергии, причем укрупнение частиц происходит самопроизвольно, обусловливая уменьшение величины Следовательно, дисперсионные коллоиды термодинамически неустойчивы их временная стабильность может быть связана с наличием энергетического барьера, предотвращающего сближение и взаимную фиксацию частиц на сравнительно малых расстояниях друг от друга (флокуляция) или полное объединение микрообъектов (коалесценция). Исходя из этого, различают дисперсии, устойчивые к флокуляции, и дисперсии, устойчивые к коалесценции. Во флокулированном, но устойчивом к коалесценции состоянии отдельные частицы объединены в очень крупные агрегаты и образуют так называемую коагуляционную структуру. Они сохраняют индивидуальность и разделены тонкими прослойками дисперсионной среды, содержащей в ряде случаев поверхностно-активные и макромолекуляриые вещества. Разрушение таких слоев, сопровождающееся либо полным объединением частиц в пенах и эмульсиях, либо возникновением [c.10]

    II Овербеком (1948), объясняет свойства эмульсий. Следует отметить, что теорию ДЛВО (название которой состоит из инициалов основных авторов теории) первоначально применяли для систем с классическими неорганическими солями. Устойчивость содержащихся в них субмикроскопических твердых частиц объяснялась электростатическим зарядом последних. Нужно подойти с осторожностью в применении этой теории к микроскопическим каплям масла, стабилизированным адсорбируемыми эмульгирующими агентами. Она может довольно хорошо описывать стабилизацию эмульсий двойным электрическим слоем (например, ионными ПАВ) против коагуляции. Однако ее нельзя использовать для онределения скорости коалесценции капель эмульсии, ибо этот процесс зависит от вытеснения или разрушения адсорбированной пленки. Кроме того, она не применима к эмульсиям, стабилизированным твердыми частицами или гидрофильными коллоидами .  [c.92]

    При оценке специфики адгезионного взаимодействия воднодиспер-сионных клеев с субстратом необ.ходимо учитывать наличие в клеевом шве эмульгатора и других компонентов дисперсии, которые не удаляются из шва вместе с дисперсионной средой (с водой). Если эмульгатор несовместим с полимером, то при коалесценции полимерных латексных частиц он выделяется на их поверхность и мешает образованию сплошной и гомогенной пленки. Правда, если субстрат пористый и может поглощать эмульгаторы, защитные коллоиды и другие вещества, которые при формировании пленки не растворяются в ней, то они могут таким образом удаляться с границы раздела пленка — субстрат. В этом случае обеспечиваются наилучшие условия для адгезионного взаимодействия латексных частиц с субстратом и их полной коалесценции. Так, при нанесении акриловой дисперсии БМ-12 на стекло и бумагу в первом случае покрытие сохраняет глобулярную структуру, характерную для дисперсий, а на бумаге образуется более однородная и гомогенная пленка. [c.72]

    Класс точности прибора 299 Классификаторы 364, 407 Клатраты 953 Клаусталит 760, 779 Клематозид С 744 Клиноэнстатит — см. Стеатит Клупеин 371 Коагуляция 102 Коалесценция 102 Кобальт, силициды 868 Кодель 228 Кодовое колесо 301 Койевая кислота 22 Коллигативные свойства 51С Коллоидное растворение — см. Солюбилизация Коллоидные электролиты 240 Коллоиды защитные 100 [c.576]

    Суспензионная полимеризация винилхлорида проводится в при- утствии растворимого в мономере инициатора (органическая перекись или азосоединение), воды и защитного коллоида. Механизм " диспергирования мономера в водной среде схематически изображен на рис. III.7. При перемешивании мономера с водой устанавливается динамическое равновесие между дроблением мономера на капли и эбратным процессом их слияния (коалесценция). С введением в среду защитного коллоида на поверхности капли мономера образуется защитный слой, и капля стабилизируется. Молекулы защитного коллоида располагаются на поверхности раздела фаз так, что их "идрофобные части (обычно углеводородная цепь) направлены в- [c.59]

    Механизм стабилизации эмульсии как твердыми, так и водорастворимыми высокомолекулярными защитными коллоидами еще окончательно не выяснен, и этот вопрос является в значительной мере дискуссионным " . Факторами, предотвращающими коалесценцию или агрегацию диспергированных частиц, защкщенных стабилизатором, могут являться 1) электростатическое отталкивание частиц вследствие образования на их поверхности двойного электрического слоя, препятствующего их сближению 2) образование на поверхности частиц структурно-механического барьера (пленочного студня), сольватированного дисперсионной средой (гидратированного) 3) взаимное отталкивание частиц за счет теплового движения гибких звеньев макромолекул защитного коллоида, адсорбированного на поверхности частиц. [c.64]

    Некоторым консистентным смазкам приписывают эмульсионную структуру. Стабильные эмульсии образуются двумя не-смешивающнмися жидкостями при наличии защитных коллоидов, которые образуют пленку на капельках дисперсной фазы, препятствующую их коалесценции (слиянию). [c.25]

    Группируя реагенты по их отношению к процессу и разделяя их на поверхностно-активные вещества, гидрофилизующие коллоиды (для гипса, кальцита, глинистых минералов), реагенты, обеспечивающие коалесценцию серы, и электролиты, влияющие на pH пульпы, можно найти оптимальные условия для каждого типа руд, что открывает широкие перспективы для автоклавной выплавки серы. [c.86]

    КОЛЛОИДНАЯ ХИМИЯ — раздел физической химии, в к-ром рассматриваются процессы образования и разрушения дисперсных систем, а также их характерные свойства, связанные в основном с поверхностными явлениями на границах раздела фаз в этих системах. Термин К. X. связан с тем, что по традиции коллоидами называют наиболее высокодисперсные системы с предельно развитой поверхностью раздела фаз (коллоидные системы). В современном ее значении К. X. является физико-химией дисперсных систем и поверхностных явлений. Особое значение К. X. онределяется тем, что 1) Природные тела — горные породы, организмы растений и животных, а также строительные, конструкционные и др. мате-риа.ды техники — являются обычно высокодисперсными, что и определяет многие их особенности, напр, высокую прочность. 2) Основой многих технологич. процессов и важнейших процессов в природе служат образование и разрушение дисперсных систем сус-пензий, эмульсий, пен, туманов, дымов и пр.) и связанные с ними процессы диспергирования и конденса-циотпшго образования новой фазы, процессы адсорбции, коалесценции, коагуляции и образования нро-ст1)аиственных структур, определяющиеся взаимодействием дисперсных частиц — поверхностными явлениями на границе фаз в дисперсных системах. [c.322]


Смотреть страницы где упоминается термин Коллоиды коалесценция: [c.92]    [c.191]    [c.240]    [c.11]    [c.595]    [c.48]    [c.323]    [c.92]    [c.118]    [c.323]    [c.608]   
Основы общей химии Том 2 Издание 3 (1973) -- [ c.616 ]




ПОИСК





Смотрите так же термины и статьи:

Коалесценция

Коллоиды



© 2025 chem21.info Реклама на сайте