Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Марганец электронное строение

    К металлам побочной подгруппы VII группы относятся марганец (Мп), технеций (Тс) и рений (Ке). Электронное строение их атомов характеризуется наличием двух 5-электронов и пяти с1-электронов, в связи с чем максимальная степень окисления атомов может достигать 4-7  [c.211]

    В соответствии с особенностями строения электронных оболочек атомов элементы VII группы подразделяются на три подгруппы типические элементы (водород, фтор, хлор), элементы подгруппы брома (бром, иод, астат) и элементы подгруппы марганца (марганец, технеций, рений). [c.287]


    В двухъядерном комплексе, содержащем кобальт, марганец и бром, облегчаются электронные переходы в процессах активации кнсло-рода [реакция (3.28)]. Лимитирующей стадией в цикле валентных превращений катализатора являются, вероятно, реакции взаимодействия неактивных комплексов с альдегидами [реакции (3.35) — (3.37)], в то же время в комплексах типа [СоЗ+---Вг" ---Мп2+] или [Соз+---Мп2+---Вг ] перенос электрона облегчен и протекание реакций ускоряется. Таким образом, активность катализатора может, очевидно, зависеть не только от его состава и строения углеводорода, с которым он взаимодействует, но и от металла, и от того, в какой валентной форме связан бром в комплексе. [c.109]

    В побочную подгруппу vn группы периодической системы входят марганец и рений. Интересно, что, несмотря на сходство строения электронной оболочки атомов рассматриваемых элементов и близость их атомных радиусов, каталитические свойства марганца и его соединений резко отличаются от свойств рениевых катализаторов. Так, если для марганцевых контактов характерными являются процессы с участием молекулярного кислорода, то рениевые катализаторы оказались достаточно активными в реакциях гидрирования-дегидрирования. [c.93]

    Несколько по-иному решается вопрос о валентностях элементов побочных подгрупп, или -элементов. У этих элементов в образовании химических связей наряду с электронами внешней оболочки принимают участие также электроны предвнешней оболочки, находящиеся на -орбиталях. Если у элементов главных подгрупп все неспаренные электроны внешней оболочки валентны и принимают участие в образовании химических связей, то для неспаренных -электронов предвнешней оболочки это вовсе не обязательно. Рассмотрим, например, хром и марганец. Строение внешних и предвнешних оболочек их атомов в основном состоянии см. в табл. 7. В наиболее характер-ных валентных состояниях строение валентных оболочек мож но представить следующим образом  [c.77]

    Можно полагать, что все металлы подгрупп скандия, титана, ванадия, хрома, а также марганец, имеющие при высоких температурах ОЦК структуру и переходящие в жидкое состояние без изменения ближнего порядка и с увеличением объема, будут обнаруживать повышение температуры плавления с возрастанием давления. Экспериментально это подтверждено для железа, родия, никеля и платины до давлений 60 кбар (см. рис. 123). Отсутствие признаков изменения электронного строения и увеличение объема при плавлении кобальта, технеция, рения и металлов платиновой группы с плотными упаковками дают основание полагать, что при повышении давления их температура плавления также возрастает. [c.275]

    Такого плана я пытался придерживаться при подготовке второго издания Общей химии . Мною введены две новые главы, посвященные атомной физике (гл. П1 и Vni). В этих главах довольно подробно рассмотрены вопросы, связанные с открытием рентгеновских лучей, радиоактивности, электронов и атомных ядер, описана природа и свойства электронов и ядер, изложена квантовая теория, фотоэлектрический эффект и фотоны, теория атома по Бору, отмечены некоторые изменения наших представлений об атоме, внесенные квантовой механикой, рассмотрены другие вопросы учения о строении атома. Все это позволит студенту первого курса вычислить энергию фотона света данной длины волны и предсказать, приведет ли поглощение света данной длины волны к расщеплению молекулы на атомы. Некоторые разделы элементарной физической химии в книге изложены подробнее, чем это было сделано в первом издании. Введена отдельная глава, посвященная биохимии. Значительной переработке подверглось изложение химии металлов. Рассмотрение вопросов, относящихся к химии металлов, начинается теперь с главы, в которой показаны характерные особенности металлов и сплавов и описаны методы добычи и очистки металлов. Затем следуют три главы, посвященные химии переходных металлов в первой главе рассмотрены скандий, титан, ванадий, хром, марганец и родственные им металлы во второй — железо, кобальт, никель, платиновые металлы в третьей — медь, цинк, галлий, германий и ближайшие к ним по свойствам металлы. В той или иной мере пересмотрено и большинство других глав. [c.10]


    Таким строением атома в 4-м периоде обладает марганец Мп несмотря на малый радиус атома, его металлические свойства резко снижены по сравнению с другими металлами. Свойства его электронных аналогов Тс и Не, находящихся в 5-м и 6-м периодах, тоже отклоняются от характерных для металлов, но в меньшей степени, так как их внешние электроны находятся на более далеких от ядер энергетических уровнях п более подвижны (наличие вакантных уровней). Заполнение электронного подуровня сопровождается проскоками электронов с подуровня 5 или внутренним возбуждением (Сг, Мо, МЬ и т. д.). Однако эти нарушения существенного влияния на физические свойства металлических кристаллов не оказывают. [c.309]

    Строение электронных оболочек атомов элементов этой подгруппы таково (/i— )d ns . На внешних энергетических уровнях атомов имеется по два 5-электрона, еще по 5 валентных электронов находятся на -подуров-нях предпоследних энергетических уровней атомов. В соответствии с таким электронным строением марганец, технеций и рений проявляют в соединениях степени окисления от +2 до 4-7. [c.274]

    Следует отметить, что Кокс, Уордлоу, Вебстер и сотрудники [7] считают, что плоское строение является характеристикой двухвалентного центрального элемента. Так, они утверждают на основании рентгенографических исследований, что плоское строение имеют не только никель, медь, платина и палладий, но и двухвалентное серебро, кобальт, марганец, олово и свинец. Такая структура для олова и свинца связана с участием внешних -состояний, или нарушает критерий Паулинга. Квадратная структура исследованных ими соединений кобальта (изомеры СоС1аРу2, где Ру — пиридин) также неожиданна, так как магнитный критерий ( 15.3) показывает, что связь ионная (или 5р )[1] и СоС1 имеет тетраэдрическую структуру. Кокс и Вебстер считают также, что Pt( Hз)з l обладает строением тетраэдра, тогда как платинат платины с координационным числом 4 может иметь квадратное строение. Если в этих соединениях связи относятся к яр й -тетраэдрическому типу, то одна из несвязующих собственных функций должна содержать электронную пару. [c.274]

    Этим объясняется широкое развитие И. среди переходных металлов по группам, горизонтальным и диагональным рядам пераодаческой системы элементов. В связи с этим при легировании сталей и чугунов главнейшими металлами являются титан, ванадий, хром, марганец, никель, молибден и вольфрам. В первом приближении период решетки твердых растворов аддитивно связан с периодами решеток компонентов. При несовершенном И. с понижением т-ры может происходить распад твердых растворов с образованием двух- или многофазных систем. Подобное яв-.тоние используют для старения металлов, т. е. получения после закалка дисперсноупрочненных сплавов (см. Дасперсноупрочненные материалы), характеризующихся повышенной твердостью, изменением магн. и электр. св-в. В твердых растворах второго рода атомы компонентов отличаются электронным строением и геометрическими характеристиками. В междоузлия металла внедряются атомы неметалла, не изменяя структуры исходного металла (сплава), что предполагает низкую концентрацию внедренных атомов. Твердые растворы внедрения образуют водород, углерод и азот. Содержание углерода в твердом растворе альфа-железа (см. Железо) — 0,025 ат.%, в гамма-железе — 2,03, в твердом растворе ниобия — 0,02 ат.%. Увеличение концентрации усиливает хим. взаимодействие атомов металла и неметалла, изменяет электронную и кристаллическую структуру, вызывает образование внедрения фазы,. Расчет радиусов междоузлий для гексагональных плотноупакованных, гранецентрированных кубических и объемноцентрированных кубических структур позволил сделать вывод о возможности внедрения атомов при гх/гщ < 0,59, где — радиус атома неметалла — радиус ато- [c.487]

    Таким образом, хром, будучи типичным металлом в свободном виде, в шестивалентном состоянии образует соединение хромовую кислоту Н2СГО4, аналогичную по строению и подобную по некоторым свойствам на серную кислоту,— со единение, образуемое типичным неметаллом. Такие же особеН ности характерны и для многих других элементов побочных подгрупп. Например, металл марганец в семивалентном состоянии образует марганцевую кислоту НМ.ПО4, по составу и некоторым свойствам напоминающую хлорную кислоту H IO4. Из сказанного можно сделать вывод, что и металлы, и неметаллы в одинаковых валентных состояниях, соответствующих номерам групп, в которых они находятся, могут образовывать сходные по составу и отдельным свойствам соединения. Причина этого заключается в подобии строения внешних электронных обдлочек атомов элементов главных и побочных подгрупп в валентных состояниях, равных номерам групп. В данном случае речь идет о тех внешних электронных оболочках, которые остаются за вычетом электронов, принявших участие в образовании химической связи. Поясним сказанное примерами  [c.274]

    Марганец, обладая более устойчивым строением валентного слоя электронов (d s ), в меньшей степени склонен к образованию металлообразных соединений. Марганец и рений образуют только силиды, обладающие металлической электропроводностью, а карбиды, нитриды и бориды этих металлов электропроводностью такого типа не обладают. [c.123]

    ЭТИ элементы — рутений [210] и осмий [34], находящиеся в той же группе, что и железо, — дают соединения типа (С5Н5)гМ. В первом ряду переходных металлов подобные продукты описаны для всех металлов от титана до никеля включительно большинство из них имеет такую же температуру плавления (173°), как и ферроцен, и образует ряд изоморфных кристаллов [206—209]. Все эти соединения следует рассматривать как подобные ферроцену по структуре связей исключение составляет марганец, комплекс которого по своему характеру является ионным и имеет магнитную восприимчивость, соответствующую пяти неспаренным электронам [48, 51, 95, 200, 217]. Рентгено структурные данные указывают, что даже ионные комплексы магния и марганца имеют такое же геометрическое строение [206, 207], как и ферроцен. [c.402]

    В настоящее время наблюдается мощный интеллектуальный подъем в неорганической химии, который сильнее всего затронул те ее области, которые лежат на стыке с соседними дисциплинами химию металлоорганических и бионеорганических соединений, химию твердого тела, биогеохимию и др. Возрастает, в частности, уверенность ученых в том, что неорганические элементы играют важную роль в живых системах. Живые существа вовсе не являются чисто органическими. Они весьма чувствительны к ионам металлов почти всей Периодической системы Д.И. Менделеева. Некоторые ионы играют важнейшую роль в таких жизненно важных процессах, как связывание и транспорт кислорода (железо в гемоглобине), поглощение и конверсия солнечной энергии (магний в хлорофилле, марганец в фотосистеме II, железо в ферродоксине, медь во фта-лоцианине), передача электрических импульсов между клетками (кальций, калий в нервных клетках), мышечное сокращение (кальций), ферментативный катализ (кобальт в витамине В12). Это привело к взрыву творческой активности ученых в области неорганической химии биосистем. Мы начинаем изучать строение ближайшего и дальнего окружения атомов металлов в биосистемах и учимся понимать, как это окружение позволяет атому металла с такой высокой чувствительностью реагировать на изменение pH, давление кислорода, присутствие доноров или акцепторов электронов. [c.158]


    Одним из наиболее интересных сэндвич-производных, содержащих db-конфигурацию Мп(Л), является бие-(циклопентадиенил)марганец [107], который имеет пять песпаренных электронов, легко возгоняется, растворим в органических растворителях. Считают, что Ср2Мн — ионное соединение, построенное сэндвичобразно из свободного катиона Мп2+ и двух анионов Ср [108], однако показано [31], что сэндвич-строение может осуществляться за счет неполного участия МО Ср-колец в связи со всеми АО марганца при сохранении пяти неспаренных электронов, формально соответствующих иону Мп2+. [c.44]


Смотреть страницы где упоминается термин Марганец электронное строение: [c.218]    [c.56]   
Основы общей химии Том 2 Издание 3 (1973) -- [ c.89 , c.227 , c.231 , c.238 , c.299 ]




ПОИСК





Смотрите так же термины и статьи:

Марганец строение

Электронное строение

электронами электронное строение



© 2025 chem21.info Реклама на сайте